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A B S T R A C T   

In metals additive manufacturing (AM), materials and components are concurrently made in a single process as layers of metal are fabricated on top of each other in 
the near-final topology required for the end-use product. Consequently, tens to hundreds of materials and part design degrees of freedom must be simultaneously 
controlled and understood; hence, metals AM is a highly interdisciplinary technology that requires synchronized consideration of physics, chemistry, materials 
science, physical metallurgy, computer science, electrical engineering, and mechanical engineering. The use of modern machine learning approaches to model these 
degrees of freedom can reduce the time and cost to elucidate the science of metals AM and to optimize the engineering of these complex, multidisciplinary processes. 
New machine learning techniques are not needed for most metals AM development; those used in other sects of materials science will also work for AM. Most 
prolifically, the density functional theory (DFT) community has used many of them since the early 2000s for evaluating numerous combinations of elements and 
crystal structures to discover new materials. This materials technologies-focused review introduces the basic mathematics and terminology of machine learning 
through the lens of metals AM, and then examines potential uses of machine learning to advance metals AM, highlighting the many parallels to previous efforts in 
materials science and manufacturing while also discussing new challenges and adaptations specific to metals AM.   

1. Motivation 

Metals additive manufacturing (AM) has created a paradigm shift in 
the way metal components are manufactured; materials and parts are 
fabricated simultaneously using a single machine, highly complex ge-
ometries are possible, and local variations of microstructure-property 
relationships may be realized through local process variations. 
Although decades of scientific and engineering work in industry, 
academia, and government have resulted in the commercialization of 
metals AM technologies, the consistency and quality of parts and ma-
terials are still open challenges for many applications. In recent decades, 
Integrated Computational Materials Engineering (ICME) approaches 
have proven to accelerate the development and adoption of materials 
technologies [1]. Traditionally, ICME approaches incorporate physics- 
based experimental data with simulations that span different length 
and time scales. However, for metals AM, much of the physics are still 
being discovered; hence, the development of comprehensive, compu-
tationally feasible physics-first approaches to ICME are still an open 

challenge. The diverse array of promises and problems in AM has 
resulted in a field of study that is rich with data – so much so that our 
ability to store and analyze the data is challenged. At the same time, this 
wealth of data is motivating a paradigm shift to incorporate machine 
learning into ICME approaches. 

1.1. Background 

The 20th century saw the maturation of materials science and en-
gineering as a field of study, enabling targeted materials discoveries and 
innovations for specific applications. Over the past several decades, 
materials development cycles have greatly accelerated by formulating 
materials problems through the process-structure-property-performance 
paradigm [1,2]. 

The process-structure-property-performance (PSPP) paradigm is a 
core philosophy in materials science and engineering that governs how 
the manufacturing of a material determines its ability to be used in 
different engineering applications. The PSPP relationships break down 
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materials development into four key areas of scientific and engineering 
interest [2]. 

In AM, the processing of a material is dictated by the thermal, me-
chanical, and chemical changes experienced during its manufacture. 
Controllable machine parameters like energy density of the heat source, 
the path in which material is deposited or fused, the order in which part 
layers are manufactured, or the location of parts on the build plate are 
determining factors of the material process history. Table 1 shows many 
of the controllable parameters common to laser-based additive 
manufacturing systems. The choice of these parameters largely impacts 
the processing history. The true processing history, however, is better 
described by the thermal history of the build volume, both during 
manufacture and post-processing, the mechanical forces it experiences, 
and any chemical reactions that occur in or on the part. Processing routes 
are often discussed in AM and typically refer to beneficial or detrimental 
processing histories that impact the part’s structure. 

The structure of a material is a wide-ranging concept that spans 
many length scales. Structure can refer to the crystallographic structure 
at the atomic scale, to the morphology and orientation of grains at the 
mesoscale, to the geometry being manufactured at the macroscale. 
Microstructure is a term often used in materials science referring to a 
specific subset of the material structure. Microstructure for metals most 
commonly refers to grain and sub-grain level information like material 
phases, grain morphologies, texture, and any defects like pores or dis-
locations that might be present. Microstructures are often considered in 
analysis of material structures because they fundamentally dictate a 
material’s properties. 

The properties of a material are characteristics that determine its 
qualities. Properties of metals AM parts that have been of interest are 
wide-ranging and they vary depending on the desired engineering 
application of the part. Mechanical properties are some of the most 
studied for AM metals since the majority of metals applications are 
structural. Other properties of interest include thermal conductivity, 
which determines the heat transfer through an AM part, chemical 
properties, like corrosion resistance, and optical properties, like 
reflectivity. 

The performance of a part is its ability to be successfully imple-
mented in an engineering application. Performance can be viewed 
through the lifetime of an AM part when subjected to the mechanical, 
thermal, chemical, etc., forces it will experience. Early additively man-
ufactured alloys showed degraded-to-comparable static properties 
compared to traditionally manufactured alloys [3]. Further research and 
development improved the static properties of AM materials, yet high 
microstructure variability and defect density can still cause AM material 
to fail unexpectedly in fatigue limited applications [4,5]. Some recent 
AM developments have resulted in material properties that exceed those 
of traditionally manufactured materials [6–11]. Ultimately AM pro-
cesses are unique relative to other metal fabrication techniques and it is 
difficult to make fair comparisons regarding performance across various 
manufacturing methods. When properly designed, AM parts can meet 
the intended performance needs in a wide variety of end-use applica-
tions. The large combinatorial space of manufacturing options in AM 

often obfuscates how proper design choices can be made. 
The materials scientist interacts with the process-structure-property 

paradigm in traditionally manufactured materials. Traditional material 
manufacturing can be phrased in a cause-and-effect relationship be-
tween process, structure, and property. Once the material has been 
developed and characterized by the materials scientist or engineer, 
another engineer then considers the property-performance linkage. 
Since material is made separately from an engineered part in traditional 
manufacturing, the PSPP paradigm can be broken up into these two 
separate sets of relationships. In AM, the material and the part are made 
simultaneously. Simultaneous material-part manufacturing motivates 
consideration of linkages across the entire PSPP paradigm. The ICME 
approach to materials science is focused on modeling, bridging, and 
predicting relationships throughout the PSPP paradigm. 

Computational materials science and engineering has enabled the 
prediction of microstructure from processing and of properties from 
microstructure, reducing the need for costly and time consuming 
experimentation in discovering or developing a new material and/or its 
manufacturing. Today, ICME approaches tightly integrate physics-based 
computational models into the industrial design process, allowing the 
desired performance requirements of a part to guide the design of a 
material. Alloy specific examples include low-Rare Earth Ni superalloys 
for better turbine performance [12] and lower cost and radioactive 
element free Ferrium S53 alloy designed for corrosion-resistant landing 
gears [13]. Both cases reduced materials innovation timelines from 
decades to years, demonstrating the practical capability of designing 
and qualifying new materials within an industrial product development 
cycle. Generalizing and accelerating this capability across different in-
dustries and materials is a primary goal of the Materials Genome 
Initiative (MGI) [14]. 

Predicting PSPP linkages in metals AM is difficult with existing 
physics-based ICME approaches. The physics of AM processes are more 
complex than traditional fabrication methods, like casting, as they 
involve rapid solidification, vaporization and ingestion of volatile ele-
ments, and complex thermal history that consists of dozens of heating 
and cooling cycles, each one different. Furthermore, all of these addi-
tional complexities vary from one location to another within a part, and 
from part to part within a build volume. For AM, physics-based ICME 
tools have been mostly developed through attempts to adopt legacy 
manufacturing models to AM data, with some success. However, today’s 
relatively low cost and time for performing AM processing experiments 
has led to metals AM development being largely combinatorial, with a 
chief strategy of adopting AM processing to legacy alloys that were 
developed for other types of manufacturing using extensive design of 
experiments. 

It is with awareness of the large amounts of data being generated in 
AM through these combinatorial development cycles that machine 
learning (ML) has been targeted to accelerate AM innovations and their 
commercialization. Machine learning as a technology development 
accelerator has shown wide application in recent years across fields 
including finance [15], molecule design for genomics, chemistry and 
pharmacology [16], social networking [17] and, most relevant to this 
review, materials science and engineering [18–20]. Still, the use of ML 
in materials science was relatively limited for a variety of reasons, 
especially the lack of large curated datasets amenable to existing ML 
methodologies. Through the work done under the MGI, this data limi-
tation was identified as a primary impediment to future materials in-
novations [14]. In response, there has been significant recent investment 
in materials database developments to better enable materials data 
informatics innovations. It is now recognized and accepted that ML 
frameworks can couple legacy physics-based ICME tools with experi-
mental data to produce more accurate process-structure-property 
models and to automate the iteration of designed experiments for 
model improvement and optimized materials [21–24]. 

We proceed to review how the paradigm shift from purely physics- 
based to coupled physics-based/data-driven ICME approaches can be 

Table 1 
A possible design space for laser powder bed fusion additive manufacturing. 
There are over 104 possible combinations of machine inputs, based on the listed 
ranges and step sizes. Any possible combination of these parameters is a point in 
the design space.  

Parameter Range Step size Levels 

Power 100–200 W 10 W  10 
Scan speed 500–1000 mm/s 100 mm/s  5 
Spot size 50–100 μm 10 μm  5 
Energy density 1–5 J/mm2 1 J/mm2  5 
Sample build direction 0–180∘ 90∘  3 
Amount of recycled powder 0–100% 10%  10 
Hatch spacing 0.1–0.50 mm 0.1 mm  5  
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made through solving metals AM challenges. We begin by phrasing 
terms and ideas from AM in ways that are compatible with machine 
learning. We provide a basic review of machine learning algorithms and 
how they can be applied to additive manufacturing. Following this 
introduction to using ML for AM problems, we review other uses of 
machine learning in materials science and engineering and state the uses 
of such approaches for solving AM challenges. 

2. Phrasing additive manufacturing as a machine learning 
problem 

While machine learning may seem abstract at first, it can be 
expressed and understood in plain terms. Many of the tenets and 
frameworks for machine learning are based in mathematical operations 
that are likely familiar to any scientist or engineer, but applied in new 
ways. In this section, we proceed to define the basic terminology and 
classes of machine learning and data. A list of machine learning algo-
rithms used in the papers cited in this review can be found in Table 2. 
The following section details general terminology and intuition for the 
application of AM. Specific ML algorithms are then introduced specific 
to contextual AM examples in Section 3. 

Machine learning algorithms are mathematical constructs that may 
be used as scientific and/or engineering tools when warranted. They are 
not appropriate for all science and engineering problems – just as finite 
element simulations should not be used to study the mechanics of 
discrete interfaces or single atomic bonds between two atoms or DFT 
should not be used to simulate mm-sized polycrystals, machine learning 
algorithms should not be used to model data that lack statistical corre-
lations. Hence, the first questions every scientist and engineer consid-
ering the use of machine learning approaches should ask and answer is: 
"how are the data statistically distributed?", and "are there statistical 

correlations between the data features of interest?" Once this is com-
plete, then a researcher can decide if ML is appropriate. 

If the data lack clear statistical correlations using basic probability 
analyses, machine learning is not a "magic box" that can suddenly make 
such correlations evident. Similarly, if the statistical distributions of the 
data are featureless except for an occasional outlier, machine learning 
cannot meaningfully fit a model that is based on statistical distributions. 

Today, many scientists and engineers are embracing the approach 
that "we will machine learn it," without understanding how to evaluate if 
machine learning is an appropriate tool to apply to a problem or not. 
One unpublished example in AM of a problem that ML is not well suited 
for is building a model to predict the location of a maximum pore within 
a powder bed laser fusion build. A maximum pore is a statistical outlier – 
usually one of thousands-to-millions, depending on the size of the part 
being built. Even though the pore may occur in the exact same position 
of the build volume if the same part is built over-and-over again (i.e., it is 
highly repeatable), the fact that it is a statistical anomaly means that 
nearly all machine learning algorithms are built to ignore it. Once this 
understanding is at hand, then a researcher can decide if ML is 
appropriate. 

Still, most data of interest in metals AM have strong statistical fea-
tures, as we will proceed to discuss in more detail in the examples given 
in this review. Once some basic statistical analysis of the data of interest 
has been performed and it has been determined that there are quanti-
fiable correlations between the inputs and outputs, or across different 
inputs, and that there are also statistical features that describe the dis-
tributions of the data, then a researcher can proceed to consider data 
featurization and processing, and then tune and evaluate the perfor-
mances of machine learning models to find the best performers. We 
proceed to describe these techniques in more detail, after defining some 
basic terminology used in this article. 

Table 2 
Several of the most widely used machine learning algorithms in materials science.  

Class of algorithm Examples Applications Strengths Constraints 

Weighted 
neighborhood 
clustering 

Decision trees, Random forest, 
k-Nearest neighbor 

Regression, Classification, Clustering 
and similarity 

These algorithms are robust against 
uncertainty in data sets and can provide 
intuitive relationships between inputs 
and outputs. See Ref. [25] for a primer 
on clustering 

They can be susceptible to 
classification bias toward descriptors 
with more data entries than others 

Linear 
dimensionality 
reduction 

Principle component analysis 
(PCA), Support vector 
regression (SVR), Nonnegative 
matrix factorization (NMF) 

Experimental design, model 
dimensionality reduction, model or 
experimental input/output 
visualization, descriptor analysis, 
regression 

This type of algorithm can produce 
orthogonal basis sets that reproduce the 
training data space. They can also 
provide quick and accurate regression 
analysis. For a primer on PCA 
specifically, see Ref. [26] 

The relationships studied must be 
linear in nature, and these algorithms 
are susceptible to bias when 
descriptors are scaled differently 

Nonlinear 
dimensionality 
reduction 

t-SNE, Kernel ridge regression, 
Multidimensional metric 
scaling 

Experimental design, model 
dimensionality reduction, model or 
experimental input/output 
visualization, descriptor analysis, 
regression 

These algorithms are robust against 
nonlinear input/output relationships 
and can help visualize similarity in high 
dimensional relationships. For accessible 
examples, see Refs. [27,28] 

Interpretation of high dimensional 
similarity can be difficult; while these 
algorithms are useful for visualizing 
relationships interpreting the why of 
the relationship found is difficult. 
Global relationships can also be lost 
when nonlinear dimensionality 
reduction results are projected onto 
lower-dimensional spaces 

Search algorithms Genetic algorithms (GA), 
Evolutionary algorithms 

Alloy design (in conjunction with a 
material modeling approach), model 
optimization. topology optimization 
for AM 

Search algorithms are intuitive for 
material properties that can be described 
geometrically, such as topology 
optimization for weight reduction. They 
are efficient at searching spaces with 
multiple local extrema, such as finding 
local maxima of quality in 
multidimensional design spaces. For a 
useful application of genetic algorithms 
to process characterization, see Ref [29]. 

These success of these algorithms are 
highly dependent upon selection and 
mutation criteria 

Neural Networks 
& Computer 
Vision 

Artificial neural networks, 
Convolutional neural networks 
(CNN), General adversarial 
networks (GAN) 

Classification, regression, feature 
identification and extraction in 
images, simulation of atomic 
potentials, transfer learning, in situ 
process monitoring, feedback and 
control 

Neural networks have successfully 
modeled processing and image data; the 
research and development surrounding 
NNs is among the most mature of any 
type of machine learning algorithm 

Neural networks tend to require large 
training datasets, especially for image 
analysis applications; however, 
transfer learning approaches can 
adopt NNs to small datasets  

N.S. Johnson et al.                                                                                                                                                                                                                             



Additive Manufacturing 36 (2020) 101641

4

2.1. The design space of additive manufacturing 

The design space of metals AM is the set of all PSPP relationships. 
More specifically, the term “design space” will be used throughout this 
article in reference to the set of AM data that is used and calculated by 
machine learning algorithms. An example design space for laser powder 
bed fusion (LPBF) of metals, the most industrially prolific of current 
metals AM technologies, is graphically depicted in Fig. 1. A comple-
mentary example of a process design space of LPBF is given in Table 1. 
Observable process phenomena may link the manufacturing parameters 
to the resulting materials properties, hence they may also be used to 
augment the manufacturing parameters and material properties within 
the design space. Examples include melt pool morphology, temperature 
history, and cooling rates. 

A single combination of process parameters, observed process phe-
nomenon, measured material properties, and a part’s performance can 
be considered as a coordinate, or point, in the design space. Single co-
ordinates, defined this way, can sometimes lead to a multitude of ma-
terial properties due to latent variables, unforeseen complications, and 
the stochasticity of the process. Explicit consideration of process phe-
nomenon in the design space coordinate can be used to more accurately 
establish unique points within the design space. In summary, any part 
that is processed under a single set of conditions and is observed to have 
a set thermal history and set of material properties can be considered to 
be manufactured at that point in the design space. 

While the design space of AM is vast, data cannot always be given to 
machine learning algorithms “as is.” It is important to consider the 
sources of data in the design space and how they need to be changed or 
curated for use with ML. 

2.2. Data sources 

Data, as a materials scientist normally thinks about the term, en-
compasses a vast range of sources and formats. Some of the most com-
mon sources of data used by materials scientists for AM can be seen in  
Table 3. 

The most obvious data that materials scientists interact with are 
scalar values like modulus, ultimate tensile strength, laser scan speed, 
laser energy, layer height, etc. Distributions of scalars are also used such 
as grain size distribution or particle size distribution of AM feedstock. 
Many materials scientists interact with series data that can be sub-
divided into several more categories. Times series data can include a 
temperature measurement from a thermocouple during an AM build. 
Other series data include X-ray diffraction histograms or X-ray fluores-
cence spectra. 

Data can also take non-quantitative forms, often referred to as cat-
egorical data. These can include crystallographic structure, grain 
morphology, or the shape of an AM part. In many cases, these catego-
rizations can be converted into quantitative data by measuring a feature 
such as the major and minor axis length of a grain. More difficult to 
quantify categorical data in AM includes melt pool morphology and 
track solidification defects like “balling" or “lack of fusion/ 
delamination." 

Images are some of the most commonly obtained data sources in 
materials science and are taken from a wide range of techniques. Light 
optical microscopy, scanning electron microscopy, and transmission 
electron microscopy images are all collected to study material structure. 
Materials processing images may include computed tomography radio-
graphs and/or 3D reconstruction of a melt pool and thermal measure-
ments using two-color pyrometry. Images can be treated as a data point 
on their own, but they are often analyzed to extract other data such as 
measuring grain size from light optical microscopy or categorizing 
crystal structure from a transmission diffraction pattern. 

Data can also be esoteric, depending upon the problems within AM 
that are being addressed. For example, a vector field of particle flow 
from a computational fluid dynamics simulation can be considered data. 

The orientation distribution function of the material’s texture can also 
be considered data. The 3D model and slicing path used to generate an 
AM part can be considered data. Limitations on what constitutes “data” 
in a materials science problem are not worth defining. Rather, it is more 
important to consider how data can be featurized for use with an ML 
algorithm, as this ability determines whether or not data are amenable 
to use for machine learning approaches. 

2.3. The featurization and curation of AM data 

Featurization involves extracting information from a data set such 
that a machine learning algorithm can interpret relationships between 
features themselves or between features and desired processing out-
comes like mechanical strength, surface roughness, shape, etc. The 
preprocessing step of featurizing data is crucial for successful imple-
mentation of machine learning algorithms. Improper featurization of 
data can impact prediction and classification errors [30]. 

Scalar data are possibly the easiest to work with because they are 
features themselves; scalar values are also often referred to as de-
scriptors in this context. Therefore, they do not necessarily require 
featurization but rather curation and organization for use with ML. In 
many cases, scientific and engineering studies of AM map scalar data 
related to machine parameters – like those in Table 1– to scalar mea-
surements of material properties, like strength, modulus, surface 
roughness, density, etc. 

It is important that machine learning models are trained on datasets 
with a certain volume of data collected i.e. datasets with statistical 
variability – in some cases this could be individual measurements of 
machine parameters and material properties distributed across the 
design space. In other cases, having repeated measurements at the same 
place in the design space can reveal variability in the manufacturing 
process. Scalar data can be featurized by conducting simple statistical 
tests to understand relationships that are already present in the dataset. 
Statistical information such as  

• mean, median, and mode;  
• standard deviation;  
• the presence of outliers;  
• correlation coefficients between parameters;  
• type of distribution (Gaussian, Lorentzian, Weibull, etc.). 

are fairly straightforward to assess. Understanding the basic statistical 
nature of the machine learning algorithms can prevent problems in the 
application of ML to AM. For example, heavily correlated inputs in a 
dataset impact the results of machine learning models. In the worst case 
scenario, having correlated inputs degrades the predictive capability of 
the algorithm being implemented; in the best case, it has no effect on 
model performance but slows down modeling and computation time by 
adding unnecessary computations [31]. 

The type of distribution that best describes the data may guide the 
underlying assumptions that some machine learning models make. For 
example, as further discussed in Section 3, Gaussian Process Regression 
assumes that a Gaussian distribution best describes the statistical vari-
ance of the data being modeled [32,33]. 

The removal of statistically correlated inputs (if necessary) combined 
with determining the statistical nature of the dataset is the curation of 
data. 

Once it is determined that the data are properly featurized and 
curated, the next step is data organization. Collections of scalar values 
can be represented by several different mathematical tools before use 
with machine learning. Matrices are used in machine learning to 
represent multiple observations, typically stored in rows, of a set of 
features (columns), for example, 
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X =

⎡

⎢
⎢
⎣

x1,1 x1,2 … x1,m
x2,1 x2,2 … x2,m
⋮ ⋮ ⋮ ⋮

xn,1 xn,2 … xn,m

⎤

⎥
⎥
⎦ (1)  

where the columns of X represent the different features, out of m, and 
there have been n repeated measurements of each. In some machine 
learning uses, the investigator wants to learn trends within the dataset. 
When varying dozens of parameters at a time, which is often the case in 
additive manufacturing, trends across multiple print parameters are not 
always obvious. In this case, a dataset of observations can be formatted 
into a matrix like in Eq. (1). This is referred to as unlabeled data. In other 
cases, the experimenter wants a predictive tool that allows them to ask: 
if I print at these specific conditions, what will be the result? In these 
cases, it is better to store the print parameters in a format like Eq. (1), but 
have the resulting properties stored in a separate vector object, like 

Y =

⎡

⎢
⎢
⎣

y1
y2
⋮
yn

⎤

⎥
⎥
⎦ (2)  

In this case, the data has been separated into inputs and outputs. This is 
referred to as labeled data. 

A time series signal can be represented as a list of scalar values that 
are correlated in the time dimension. Indeed, it is possible to represent 
collections of time series signals using the mathematical form in Eq. (1), 
where each column is a time step and each row is a different measure-
ment. For some applications, this data processing approach will result in 
unnecessary data being used for modeling. For example, if looking for 
indications of defect formation, much of the collected data can be 
ignored. It can be reasonably assumed that defect formation occurs 
when certain signals change from an expected mean value, like a rapid 
rise in temperature or energy density of the laser. In these cases, it is 
better to search for indications of these changes away from the expected 
mean value instead of using the entire signal. 

Featurization in this case is searching for aspects of the series that are 
correlated with a desired process outcome. For a timeseries signal, useful 
features include the signal maximum, minimum, locations with sharp 
changes in curvature, sudden changes in absolute value, and more. For 
other series data, such as diffraction histograms or spectral data, other 
features need to be considered. For diffraction histograms values like 
peak position, peak breadth, peak intensity, etc., are useful. Values 

Fig. 1. The design space of metals additive manufacturing spans many engineering disciplines since the material and part are made at the same time. As shown in 
this schematic, alloys, parts, and manufacturing process designs are concurrently considered in the "pre-build" phase. The physics of the process itself may then be 
modeled, including feedstock dynamics, thermodynamics and kinetics of melting, solidification, and thermal histories, which dictate the final microstructure. Today, 
post-processing treatments are typically performed as secondary processes, though the future points to “hybrid manufacturing" processes where they are also 
incorporated at the point of fabrication. 

Table 3 
Types and sources of data common in materials science and, specifically, additive manufacturing. The entries under each vary from a source of data – like a char-
acterization technique – to the data itself – like a single measured scalar value.  

Scalar Time series Spectral Images Categorical Spatial 

Ultimate tensile strength Stress-strain curve X-ray diffraction TEM Composition 3D model and slicing path (e.g. 
STL file) 

Hardness Temperature gradient X-ray Photospectroscopy SEM Quality Scan path 
Toughness Pyrometry X-ray dispersive 

spectroscopy 
Optical metallography Crystal structure Part orientation in build 

chamber 
Fracture Strength Thermography  X-ray computed 

tomography 
Melt pool 
morphology 

Crystallographic texture 

Density Differential thermogravimetric 
analysis  

High energy diffraction 
microscopy   

Solidification velocity Differential scanning 
calorimetry     

Cooling rate Chemorheology     
Solidus/Liquidus 

temperature 
Magnetometry     

Enthalpy of formation/ 
melting      

Pore size      
Fatigue properties       
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measured in between peaks (i.e. the background noise) can likely be 
ignored. One of the major benefits of featurizing series data is removing 
unnecessary values – indeed, the field of compressive sensing is focused 
around removing redundant information from series signals [34]. This 
type of featurization is useful for formatting extracted scalar values into 
matrix and vector objects like Eqs. (1) and (2). Once features have been 
extracted from the series signal they can be represented as a collection of 
scalars. From there, the collection of features should be treated to the 
same statistical litmus tests described above for scalar values. It is worth 
noting that some machine learning algorithms use entire series for in-
puts and featurize them as part of the algorithm [35–37]. 

Featurization of images is an active area of research in computer 
vision, a subfield of machine learning. Images are characterized by a 
spatial correlation in intensity: discrete changes in intensity dividing 
regions/domains of comparable, or slowly varying, intensity. Images are 
also most often represented as matrices of spatially-correlated intensity. 
The image processing algorithms discussed elsewhere in this review rely 
on a matrix representation of images. There are many toolboxes avail-
able, both free and commercial, which can pre-process images for use in 
machine learning algorithms; for example, the MATLAB Computer 
Vision Toolbox and the C++/Python OpenCV libraries. 

Featurization of images occurs in a wide variety of ways and will be 
discussed in-depth in Section 3. However, it is worthwhile here to 
discuss filters, one of the most common ways of extracting features from 
an image. A filter is a mathematical operation applied to a region of an 
image that changes or enhances that image. Filters can be used to 
remove noise or distortion from an image, blur the image, sharpen 
edges, and more. 

Filtering an image is computing the product of a matrix w with a 
matrix f(x, y). The function f is the pixel value of an image I at location 
(x, y). The filter is applied as the product 

g(x, y) =
∑m

s=− m

∑n

t=− n
w(s, t)f(x + s, y + t) (3)  

where g(x, y) is the matrix resulting from the operation .2 The product in 
Eq. (3) is a convolution of w and f. In certain cases a correlation oper-
ation is applied instead. More information on these operations can be 
found in the work of Szeliski et al. [38], or any online open resource 
discussing image filtering. 

The product of filtering is another image g(x, y) that has been 
modified or enhanced to reveal aspects of the original image. The 
application of filters can identify edges, reveal bright spots, reduce 
noise, blur, and do more to an image. The filtered matrix g can also be 
used as input for a machine learning application, like regression. Some 
machine learning applications like convolutional neural networks 
(CNNs) actually learn filters w themselves that maximize prediction 
accuracy in regression applications. 

While filters are perhaps the most common featurization tool for 
images, other featurization methods exist. N-point correlation functions 
have found extensive use in extracting features from materials micro-
structure data [40]. 

Many machine learning algorithms can operate directly on machine 
inputs and processing outputs; however, it can be equally useful to 
measure the relationship between data points instead of the values of the 
data points themselves, i.e. using the covariance. The covariance is 
measured between two data points κ(x,x′), instead of being a property of 
a single data point. The function κ( ⋅ , ⋅ ) is called a kernel function. The 
covariance between data points encodes cross-correlated information 
within the design space. Kernel functions can be used to assess the 

similarity of design space coordinates or to transform the feature space – 
for example, from a linear to a logarithmic space, or from a continuous 
to a logistic space – to better suit the underlying physics of the featur-
e–target relationship [41]. Ways of calculating covariance are many and 
varied and will be defined explicitly throughout this review as they are 
used. 

Once data has been pre-processed and featurized it can be used in a 
machine learning algorithm, but first it is important to consider some of 
the underlying assumptions of machine learning and ensure that the 
dataset being used meets those assumptions. 

2.4. The assumptions behind machine learning 

Two fundamental assumptions underpin the use of machine learning: 
.  

• The Relational Hypothesis: a correlative relationship exists between 
the data input to the ML model and the response of the system.  

• The Similarity Hypothesis: similar points in the design space will have 
similar properties. 

The relational hypothesis is a foundation for predictive models: after 
all, no prediction is possible in the absence of a correlative relationship 
between input and response. 

The similarity hypothesis supposes that data are comparable: that 
according to some measure of similarity, similar input will produce 
similar output. 

There are two types of machine learning covered in this review: 
unsupervised and supervised. Unsupervised learning will find trends in a 
dataset that are indicative of the underlying behavior. Supervised 
learning will learn a function f(x) = y that encodes part of the PSPP 
relationship. We proceed to walk through toy examples of each type; 
keep in mind that these are simplified examples meant to provide 
intuition behind the uses of machine learning. Scientists and engineers 
should research machine learning models, their uses, and their specific 
underlying assumptions before applying them. 

2.5. Unsupervised machine learning 

Unsupervised machine learning algorithms are used to identify 
similarities or draw conclusions from unlabeled data by relying on the 
similarity hypothesis. Unsupervised approaches are useful for visual-
izing or finding trends in high dimensional data sets, screening out 
irrelevant modeling inputs, or finding manufacturing conditions that 
produce similar material properties. 

Consider an experiment that varies three different manufacturing 
inputs x1, x2, x3 and measures a single material property y. A distance 
metric can be defined between data points in the design space. For 
example, data can be collected at two points a = (x1, x2, x3) and b = (x1 
+ δ, x2, x3). The ℓ2 norm of a− b yields 

||a − b||2 = δ. (4) 

The value and magnitude of δ gives an inclination about how similar 
a and b are. If δ is close to zero, then a researcher can say that a and b are 
similar. As δ becomes larger a researcher can say a and b become more 
dissimilar. The concept of “similar” manufacturing conditions may be 
easy to assess by an experimentalist when tuning only a few parameters 
at a time. When taking into consideration tens or hundreds of design 
criteria, sometimes with correlated inputs, elucidating similar 
manufacturing conditions becomes difficult. This vector distance 
approach is a simple, yet effective first glance at similarity in a design 
space and is generalizable to n many design criteria. 

Steps must be taken to ensure that a and b can be compared in a 
meaningful way. It would not make sense, for example, for the first entry 
of a to be in units of N while that of b is in MPa. Dimensional analysis 
provides a physical check on comparability; that the same property is 

2 The product between w and f is not valid in all locations due to mismatches 
in indices at the border of the image. There are special cases defined where 
either the weight matrix or the image needs to be modified; Szeliski [38] and 
MATLAB’s documentation [39] provide more information. 
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being measured in both instances. But distances need not be limited to 
physical quantities or measurements. Distance is, more generally, a 
measure of the similarity of two objects and. The similarity, or dissim-
ilarity, of two distributions P and Q may be measured by their Kull-
back–Leibler divergence, (DKL(P∣∣Q) + DKL(Q∣∣P)), although not a true 
distance metric because the KL divergence does not satisfy the triangle 
inequality. The distance between two sets, say two sets of categorical 
variables, could be measured by the Jaccard Distance or by the Tani-
moto Similarity. 

Let us say that δ is small and that a and b are similar manufacturing 
conditions. Now, consider a third point in the design space c = (x1 + δ, 
x2 + δ, x3) that has not yet been measured. 

Since c was manufactured at similar conditions to a, as measured by 
⃒
⃒
⃒
⃒c − a

⃒
⃒|2 =

̅̅̅
2

√
δ, then we may say that a, b, and c are all similar to each 

other. If the similarity hypothesis is correct then manufacturing with 
conditions a, b and c should yield similar measurements of y. 

To better understand why unsupervised learning is desirable for AM 
R&D consider a research project with initial manufacturing inputs a, b, 
c, d, etc., and associated property measurements that have been tested. 
Measuring the remainder of all possible design space coordinates to map 
the process-structure-property-performance relationship quickly be-
comes prohibitive. Instead, researchers can use similarity metrics to 
determine whether or not a future test is worth running. Comparing the 
manufacturing inputs through vector distance gives a rough idea of the 
possible outcome before spending time and resources on running a test. 
If the intent is exploring design spaces then manufacturing at conditions 
furthest away from previously observed points may be the answer. If 
looking for local maxima of quality, an operator would want to manu-
facture at conditions nearest to the conditions currently known to have 
high quality. 

Another common application of unsupervised learning is finding 
clusters in data sets that produce useful partitions of material behavior. 
Using vector distances as metrics of similarities can produce results that 
are analogous to creating process maps [42], which is further discussed 
in Section 3.2.2. 

The following demonstration of unsupervised learning is based on k- 
means clustering, a commonly used unsupervised machine learning 
clustering algorithm. 

A researcher has acquired the datasets in Eq. (1) and wants to 
partition xj ∈ X into groupings of print parameters that produce similar 
results. However, there are several values of xj ∈ X that lie between two 
extremes and the cutoff for “similar conditions” is not obvious. Simi-
larity metrics can be used to find demarcations in the dataset that 
indicate regions of similarity. To begin, the data set is partitioned 
randomly into two groups, X1 and X2. The centroids m1, m2 (or centers of 
mass, in engineering) of each grouping can be calculated as 

m1 =
1

|X1|

∑

xj∈X1

xj

m2 =
1

|X2|

∑

xj∈X2

xj.

(5)  

where ∣X∣ is the mean value of a grouping. The measurements were 
randomly partitioned at first; the goal is to re-partition each set so that 
similar measurements are in the same set. To do this, we can re-assign 
each set by 

X1 = {xi : ||xi − m1||2 ≤ ||xi − m2||2}

X2 = {xj :
⃒
⃒
⃒
⃒xj − m2

⃒
⃒|2 ≤

⃒
⃒
⃒
⃒xj − m1

⃒
⃒|2}.

(6) 

The re-assignment in Eq. (6) can be interpreted physically: if a 
measurement initially assigned to set X1 is closer in distance to the 
centroid of X2 then it is more similar to the other set. Thus, it is re- 
assigned. Measuring the similarity of each data point to the mean of 
the groupings re-classifies these outliers into groupings that are more 
reflective of the position in the high dimensional design space, giving 

manufacturing designers insight into how design parameters are 
distributed in that space. 

Once re-assignment is complete the centroids in Eq. (5) can be re- 
calculated and updated. Then, data points are re-assigned once more 
based on how similar they are to the centroid of each partition. If the 
input settings (x1, x2, x3) are partitioned along with their corresponding 
measurements, then we have lists of input settings that are likely to give 
good/bad quality parts. Further analysis can also be conducted, such as 
analyzing which regimes of inputs lead to good or bad quality – this is 
precisely what process maps represent. The difference in this case is that 
n many manufacturing conditions can be related to a quality metric 
simultaneously, with little to no human inspection or intervention. 
Additionally, a researcher can dig further and analyze why groups of 
input settings result in given quality for a material property. 

2.6. Supervised machine learning 

In a supervised machine learning algorithm the goal is to determine a 
functional relationship f(x) = y based on previous measurements of y at 
points x in the design space. That is, supervised machine learning al-
gorithms relate manufacturing inputs to labeled output data. 

Functional mappings of input data x to process outcomes y can take 
the form of either regression or classification. In a regression problem, 
the goal is to find mappings between inputs x to continuous values of y. 
An example includes predicting mechanical strength from processing 
conditions, where the process conditions can be continuous or discrete, 
like those in Table 1, and the output y can be any reasonable value of 
strength. A classification problem sorts inputs x into categories with 
associated labels. These classifications can be binary or one-of-many 
classes. An example would be training an algorithm to answer the 
question “Will the build fail?" based on processing inputs, with the 
possible class labels being “Yes" or “No." 

Functional relationships can take many forms, depending on the 
specific supervised ML algorithm being used. One method is to model 
the relationships as a vector product 

Xβ = Y. (7)  

where β is a vector of coefficients that weight the machine inputs to 
approximate an entry in Y. 

A researcher usually seeks this relationship through the measure-
ments they have observed; in this case, the measurements are stored in 
the matrices of Eqs. (1) and (2). A common method to find a vector 
representation of β, and a critical element in most machine learning 
algorithms, is through least squares regression. Least squares regression 
finds β through a minimization problem, given by 

min
⃒
⃒
⃒

⃒
⃒
⃒Xβ − Y

⃒
⃒
⃒|

2

2
. (8)  

Eq. (8) can be interpreted analogously to similarity measurements for 
unsupervised algorithms: the closer that Xβ − Y is to zero, the more 
similar Xβ is to f(x). 

The methods of solving Eq. (8) are many and varied; indeed, much of 
this review will focus on finding solutions to Eq. (8) for various problems 
throughout additive manufacturing. The result is an approximation to 
the functional relationship f(x) = y. A new point of interest in the design 
space x′ can be chosen and its associated material property y′ can be 
predicted by computing 

x′β = y′. (9)  

This simple example demonstrates how functional relationships can 
elucidate more information about design spaces from previously 
generated data. 
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2.7. Error metrics 

Models that are used to predict values, whether numerical regression 
or classification algorithms, must have metrics to assess success. There 
are a multitude of error metrics that are used in the machine learning 
community. Different error metrics provide different information about 
the model, such as its ability to predict mean values, its robustness 
against outliers, and uncertainty in predictions, amongst other infor-
mation. Many different error metrics have been formulated by the sta-
tistics community and used by the ML community [43]. Here, we review 
many of the most commonly used error metrics. For readers interested in 
more in depth discussion and examples, the website DataQuest provides 
an open source article about common error metrics [44], explanations of 
commonly used error metrics and their benefits/drawbacks can be found 
in Table V of Shan et al. [45], and Botchkarev wrote a review article 
detailing different error metrics used by the machine learning commu-
nity over time [46]. 

The following parameter definitions are used in the ensuing basic 
introduction of common error metrics and the remainder of the article.  

• ŷ – the value predicted by a regression algorithm f(x) = ŷ.  
• y – the actual value of a material process/structure/property at input 

location x.  
• n – the sample size used to train a machine learning algorithm. 

The mean absolute error (MAE) assesses the absolute residual be-
tween the predicted value of a regression problem and the actual value. 
It is calculated as the absolute difference between predicted value ŷ and 
the actual value y, normalized by the sample size. Stated mathemati-
cally, the mean absolute error is 

MAE =
1
n
∑n

i=1
∣yi − ŷi∣ (10)  

MAE penalizes error linearly. The MAE penalizes outliers in the data 
with the same magnitude as data points lying close to the mean. The 
mean absolute error can also be changed into a percentage, the mean 
absolute percentage error (MAPE) by normalizing each individual error 
measurement against the actual value y. Stated mathematically, 

MAPE = 100 ×
1
n
∑n

i=1
∣yi − ŷi

yi
∣ (11) 

Other error metrics highlight the impact of outliers on the dataset. 
The mean squared error (MSE) squares the difference term in Eq. (10) to 
produce 

MSE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
⃒
yi − ŷi|

2
. (12)  

The MSE penalizes error quadratically. Outliers in the dataset will have a 
much larger impact on MSE than they will on the MAE. A downside of 
the MSE is that the errors are reported as the square of the units being 
predicted by the model. Some users wish to have an error with the same 
units as the value being predicted; thus the root mean squared error 
(RMSE) adds a square root such that 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n
∑n

i=1

⃒
⃒
⃒
⃒
⃒
yi − ŷi|

2
√
√
√
√

. (13) 

All of the above metrics produce a measure of the absolute value of 
the error in the model. In some cases it is useful to know if a model is over 
predicting the value (negative error) or under predicting the value 
(positive error). In these cases, the MAE can be modified to the mean 
percentage error (MPE), given as 

MPE =
1
n
∑n

i=1

(
yi − ŷi

yi

)

(14)  

The MPE can reveal if a machine learning prediction algorithm is 
skewed towards certain types of values. 

All of the above error metrics are suitable for regression problems 
with continuous value of ̂y. In the case of a classification problem, where 
the outputs are non-numerical, a non-numerical method of measuring 
error must be defined. While several methods have been developed 
[47,48] a common method is to use a confusion matrix. A confusion 
matrix displays the percentage of classifications that were correctly 
identified, as well as the percentage of classifications made to the wrong 
class. An example confusion matrix can be seen in Fig. 2. In this figure, 
the main diagonal of the figure displays the percentage of data points 
that were correctly identified by class. The off-diagonal components 
display when a certain class was mis-identified as another class and how 
often it occurred. 

2.8. The bias-variance tradeoff and model validation 

Now that basic methods of machine learning and associated error 
metrics have been defined we proceed to introduce how machine 
learning models are fit and validated. The following discussion focuses 
on finding parameters to fit a machine learning algorithm, how those 
parameters are validated, and common obstacles that arise in validating 
the model. 

A cost function3C(x; θ), is a metric that quantifies the fit of a 
particular model parameterization. A cost function quantifies the error 
in a prediction and can be any non-negative, scalar function that in-
creases monotonically away from a target value. [50]. That is, for every 
input dataset x there is an associated set of parameters θ for the machine 
learning model that best fit x to corresponding y. The training step is 

Fig. 2. A confusion matrix used in a study by DeCost and Holm [49]. The goal 
of the study was to classify materials based on images of their microstructures. 
The main diagonal of the matrix represents correct classifications. In the case of 
the upper-leftmost entry, 11 images of ductile cast iron were correctly identified 
as ductile cast iron. The upper-rightmost entry indicates that 1 image of ductile 
cast iron was incorrectly classified as a superalloy. 

3 Also sometimes called the loss function or reward function depending on if 
the objective is to minimize or maximize the value [50]. 
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concerned with finding the model parameterization that minimizes the 
cost. There are many different choices for cost function but the best 
known cost function is the squared loss, given in Eq. (8). 

The cost function is used to optimize a parameterization of a machine 
learning algorithm. For example, a least squares regression algorithm is 
parameterized by βi, 

ŷ = β0 + β1x + β2x2 + … + βnxn. (15)  

Optimal values of βi minimize the value of ∣Xβ − Y∣ in Eq. (8). The actual 
method of performing this optimization can take on many forms and is 
discussed in-depth elsewhere. The scikit-learn package, part of the Py-
thon scipy library, provides many methods for optimization of cost 
functions [51]. Gradient descent is a common method for performing 
cost function optimization [52]. Brochu et al. discuss optimization of 
cost functions using Bayesian optimization, an important topic in 
modern statistics [53]. 

Most machine learning methods – such as neural networks, decision 
trees, and ridge regression – also have model hyperparameters. These 
parameters define aspects of the model itself, not aspects of a specific 
parameterization of the relationships between x and y. For linear 
regression of a polynomial function to a dataset the weights βi are model 
parameters and the order of the polynomial is a model hyperparameter. 
Hyperparameters will be discussed more in-depth later as specific ma-
chine learning algorithms are introduced in Section 3. 

All machine learning models follow a basic training and validation 
process:  

• Divide data into training, test, and validation data: {X,

y}→
{
{X, y}train, {X, y}test, {X, y}validate}

}
. 

• Estimate the model parameters, θ̂, using {X, y}train using an appro-
priate cost function. 

• Adjust the model hyperparameters using {X, y}test based on the ac-
curacy of the best fit parameterization of θ.  

• Validate the best parameterization and check against over- or under- 
fitting by evaluating the model on the validation set {X, y}validate. 

These steps are repeated until the model performance, as measured by 
the model error estimate, converges. 

As the complexity of the model increases – such as the complexity of 
a polynomial in a linear regression problem – so does the tendency of 

that model to overfit to the training data and generalize poorly to unseen 
inputs, leading to an increase in the out-of-sample error. This balance 
between the ability of the model to represent the inherent complexity 
between the input and output spaces (i.e., reduce the model bias) while 
minimizing the out-of-sample error (i.e., reduce the model variance) is 
the basis for the bias-variance tradeoff that is central to all machine 
learning models. Visual examples of overfitting, underfitting, and proper 
fitting can be seen in Fig. 3. The goal in validating a machine learning 
model is to find a balance between overfitting the training dataset and 
underfitting the testing dataset, as shown in Fig. 4. While the RMSE 
shows a decrease in the training dataset as model complexity increases, 
the RMSE of the testing dataset increases significantly. 

Overfitting and selection bias can be sussed out through use of cross- 
validation. Cross-validation is the process of training machine learning 
models on subsets of the training set and evaluating with the remaining 
data to see how sensitive the model performance is to the choice of 

Fig. 3. Illustrations of high bias and high variance models. 
A toy dataset was generated from the polynomial 
y = 5 + 0.1x + 0.1x2 

+ 0.1x3 
+ 0.002x4 

+ Random Noise. 
The fits in (a) and (b) are both parameterizations of a 
model. Each model (line) in both fits has approximately the 
same error but does not accurately capture the behavior of 
the data due to poor model assumptions; in this case, 
fitting a first order polynomial to a dataset generated from 
a fourth order polynomial. This is an example of high bias 
models. A twentieth order polynomial was fit to a subset of 
the full dataset in (c), shown in blue. While the model has 
very good predictive error for the training dataset it will 
not extrapolate well to the data in the testing set; this is 
overfitting or high variance. A third order polynomial was 
fit to the data in (d) demonstrating a good balance between 
bias and variance. The model accurately captures trends in 
the data while not overfitting the training dataset.   

Fig. 4. The calculated root mean squared error for six different models fit to the 
dataset shown in Fig. 3. The training data continues to decrease as the models 
become more complex, demonstrating overfitting. However, when the model is 
evaluated against a test dataset the RMSE increases significantly with more 
complex models. 
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different inputs. Cross-validation is often referred to as k-fold cross 
validation because the machine learning model is trained on k different 
subsets. 

In k-fold cross validation the training data set is randomly split into k 
different groups or folds. The machine learning model is trained on 
k − 1 of the folds and tested on the kth fold. For each training and testing 
set the fit model parameters and associated error should be kept in order 
to assess how each parametrization of the model performs. 

Randomizing, training, and validating on multiple subsets of the data 
elucidates the model’s ability to perform on new datasets. If a model is 
suffering from overfitting, or high variance, then it will have very low 
predictive error on the training set but perform poorly on the testing set. 
If the model is suffering from high bias then it may demonstrate similar 
performance metrics between fitting of each kth set but has high pre-
diction error in general. High bias often results from improper as-
sumptions in the machine learning algorithm or a poor choice of model 
hyperparameters. Cross-validation reveals these behaviors in machine 
learning models by providing error metrics for models trained on many 
different subsets. Necessary changes to the model hyperparameters, or 
even changes in machine learning modeling used, can be discovered 
from cross-validation. 

One specific case of cross-validation where k = n is called leave one 
out cross-validation. In this method the models are trained on all data 
points except one, then tested on the remaining data point. Leave one 
out cross-validation is especially useful for assessing the impact on 
outliers of the model performance. 

Another method of cross-validation called leave-one-cluster-out 
(LOCO) cross-validation was introduced by Meredig et al. [54] for ma-
terials science applications. LOCO CV was introduced to highlight 
problems in the distribution of data in materials datasets. Often, datasets 
from materials science are limited around specific clusters of material 
compositions or properties. An example for AM is that most datasets 
generated focus around weldable alloys like 300 series steels, superal-
loys, and titanium alloys. As a result the prediction performance of 
machine learning algorithms may be biased toward these clusters of 
materials. LOCO CV uses a nearest-neighbor clustering approach – akin 
to the example given in Section 2.5 – to evaluate the impact of clustering 
of material types on prediction performance. 

The above methods are for the validation of individual machine 
learning models. In many cases it is worthwhile to train several different 
machine learning models on the same problem and assess the best 
model. As is shown in Table 2, several different machine learning al-
gorithms can often be applied to the same task. Because each algorithm 
has different assumptions, one type of ML model may perform better on 
a dataset than others. Thus, it is worthwhile to use tools that can 
compare the performance of different ML models for the same 
application. 

2.9. Comparison across machine learning approaches 

The validation of a single machine learning model can be addressed 
by the methods presented in Sections 2.7 and 2.8. Finding the best 
possible parameterization of an individual model does not guarantee 
that a researcher has found the best possible solution to their specific 
problem. It is generally good practice to evaluate several machine 
learning approaches to a problem and choose the best approach across 
all algorithms that may be reasonably expected to perform. Table 2 
shows that many different algorithms can be used for the same types of 
problems. Different algorithms may have vastly different performance 
even for the same problem or dataset. 

For example, Principal Component Analysis (PCA) and kernel ridge 
regression (KRR) can both be used as regression tools; PCA relies on the 
assumption of linearity between inputs and outputs while KRR does not. 
Often, a researcher might not know the if the relationship being studied 
is linear or not and therefore should try both options to see which pro-
duces a better result. 

In general, researchers can follow a few steps to determine which 
model is best for their additive manufacturing problem:  

• Evaluate if there are statistical correlations in the data of interest.  
• Pre-process and featurize data for use with a machine learning 

algorithm.  
• Tune the model parameterization and hyperparameterization 

through error analysis and cross-validation. 
• Compare error metrics across several algorithms and select one al-

gorithm as the best performer. 

Regression models can be validated against each other using the 
error metrics in Section 2.7. It is important to use multiple error metrics 
for comparison because different machine learning algorithms handle 
outliers and statistical correlations differently. For classification prob-
lems, a graph called a receiver operating characteristic (ROC) curve has 
been developed to compare the classification success of different algo-
rithms. An example ROC curve can be seen in Fig. 5. The ROC curve 
compares the true positive and false positive classification rates for a 
binary classifier, a group of problems whose solution can take one of two 
outcomes. To ensure that Type I error (false positive) accurately reflects 
the performance of the model, the less common outcome should always 
be taken as the True condition, and the more common outcome as the 
False condition.4 More information on ROC curves can be found at 
Google’s developers page [55]. 

Tools to compare across machine learning algorithms are invaluable 
and should be considered as a mandatory part of any machine learning 
approach. It is often the case that evaluating many machine learning 

Fig. 5. An example receiver operating characteristic curve from the work of Liu 
et al. [56]. The goal of the study was to class material properties based on 
additive manufacturing machine inputs. The classes were regimes of material 
quality like “high density" or “low density." The dataset was built by mining 
data from literature on additively manufactured metals. The area under the 
curve (AUC) shows the integrated area under each algorithm’s ROC curve; a 
perfect classifier has AUC = 1. In the example shown, Naïve Bayes significantly 
outperforms the other two algorithms and thus is the best choice of machine 
learning approach for this problem. 

4 Although restricted to binomial classification, the ROC curve may be 
extended to multinomial classification by recursion. That is, A or not A; and if 
not A, then B or not B; and if not B, then C or not C; etc. where A, B, C, etc. are 
all potential outcomes in order of increasing frequency. 
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algorithms against each other will lead to better overall performance 
because the best approach can be chosen from many. The ML packages 
listed in the next section all contain tools for comparing machine 
learning algorithm performance. 

2.10. Machine learning toolboxes 

Most of the machine learning algorithms and approaches discussed 
in this review are, in some form, free and openly accessible. Many ma-
chine learning packages exist across many different programming lan-
guages and platforms. Table 4 highlights a variety of computational 
tools and packages and their relevance to AM synthesis optimization. 

3. Current ICME tools are well equipped to integrate with an ML 
framework 

The following section discusses how machine learning approaches 
can be used in current R&D efforts in AM. This discussion includes how 

physics-based analyses, characterizations, and simulation methods may 
connect with different machine learning algorithms. Overall, the dis-
cussion is aimed at conveying how ML can be used to automate the 
generation of AM PSPP knowledge. Still, this article stops short of 
providing an exhaustive review of either machine learning algorithms or 
additive manufacturing. Instead, the intent is to introduce how ML ap-
proaches can be connected to AM research. The algorithms that are 
discussed were chosen because they were previously demonstrated in a 
materials science and engineering application or because the possible 
application of an algorithm to AM was clear and immediate. Similarly, 
the additive manufacturing problems addressed are not all- 
encompassing; they are merely a few that may be immediately 
addressable with machine learning approaches. 

3.1. Experimental methods and manufacturing design 

3.1.1. Alloy design and feedstock selection 
Choice of alloy impacts the physics of AM from start to finish, 

ranging from the interactions of energy sources with material feedstocks 
to the performances of the final parts. For example: the reflected vs. 
absorbed intensity of lasers on powder beds is determined by the pow-
der’s composition [64,65]; the density of feedstock, both intra- and 
inter-granular density, plays a role in final part density [66]; conduction 
modes in the melt are partially determined by the thermal properties of 
the alloy [8]; and different alloys exhibit different solidification kinetics, 
which can lead to drastically different microstructures after manufac-
ture [67]. Problems in the additive process can also be linked to 
composition such as vaporization of constituent elements due to rapid 
thermal fluxes, impacting the stoichiometry of melt pools and, ulti-
mately, quality [68]. These can be different for different feedstock types 
(e.g., wire vs. powder), even for the same alloy choice. Wysocki et al. 
discuss the differences between different additive manufacturing pro-
cesses for titanium alloys: electron beam, laser based, powder, wire, etc 
[69]. Some studies have also investigated the impact of feedstock 
properties like particle size distribution and morphology on process 
quality [65,70,71], although the direct impacts have not been fully 
resolved. 

As such, alloys developed for traditional metals manufacturing 
techniques such as casting, rolling, extrusion, etc. sometimes need to be 
altered to improve AM processing. In the best cases, alloys developed for 
AM may outperform traditionally manufactured alloys. For example, 
unique strengthening mechanisms can result from AM processing 
[8,7,68,72]. Designing alloys for AM – either altering the chemistries of 
known alloys or discovering new alloys – requires considering the im-
plications of the physical properties of alloys with AM processing. An 
understanding of what trend in a physical property is “better" or “worse" 
for AM processing is still an open area of research. Hence, while infor-
mation about the physical properties of different alloys has been collated 
into databases that are compatible with design for AM, models and 
optimization targets for mining those databases to extract candidate 
alloys for AM are still being developed and verified. 

Existing databases contain alloy properties ranging from the reflec-
tivity to the mechanical properties. The International Crystal Structure 
Database (ICSD) contains the crystal structures of millions of composi-
tions. The Linus Pauling files contain a range of material information, 
from atomic properties like radius and electron valency to crystallo-
graphic level information [73]. More modern databases such as 
AFLOWLib [74] and the Materials Project [75] allow users to interac-
tively search across different types of alloy information. Searching 
through large databases of information to find optimal compositions for 
manufacturing is actually one of the earliest materials informatics 
problems ever addressed. Methods exist to perform these searches in a 
fast, automated way. These methods are referred to as data mining, a 
data-driven materials design approach. 

Data mining has been demonstrated to be useful for AM alloy 
development. Martin et al. used such an approach to modify the 

Table 4 
Commonly-used machine learning, statistical analysis, and computer vision 
toolboxes. Some toolboxes listed are open source, while some are packaged with 
commercial software like MATLAB.  

Language/ 
Platform 

Package Applications 

Python scikit-learn [57] General data mining toolbox; packages 
for classification, regression, clustering, 
dimensionality reduction, model 
selection, and data pre-processing  

tensorflow [58] Machine learning toolkit for data mining 
and data flows; specifically focuses on 
the use of neural networks and deep 
learning for model building and problem 
solving  

keras [59] Deep learning-specific machine learning 
toolbox; designed for intuitive building 
of neural network systems  

OpenCV [60] Algorithm toolbox for machine learning 
and computer vision; contains wide 
range of tools for image processing 
including image pre-processing, 
template matching, object identification, 
and convolutional neural networks 

MATLAB Statistics and Machine 
Learning Toolbox [61] 

Commercial data analysis and machine 
learning toolbox with a wide range of 
applications in data analysis including 
clustering, classification, regression, and 
dimensionality reduction  

Computer Vision 
Toolbox [62] 

Algorithm toolbox for machine learning 
and computer vision; contains tools for a 
wide range of image analysis including 
pre-processing, object identification, 
template matching, and convolutional 
neural networks 

C ++ OpenCV [60] Algorithm toolbox for machine learning 
and computer vision; contains wide 
range of tools for image processing 
including image pre-processing, object 
identification, template matching, and 
convolutional neural networks  

tensorflow [58] Machine learning toolkit for data mining 
and data flows; specifically focuses on 
the use of neural networks and deep 
learning for model building and problem 
solving 

R Machine Learning in R 
(MLR) [63] 

Infrastructure for incorporating common 
machine learning functions in R in an 
easy way; provides robust packages for a 
wide range of machine learning-based 
tools including regression, classification, 
clustering, sampling methods, model 
optimization and more; has built in 
parallelization methods  
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chemistry of aluminum alloys to make them process better during LPBF 
[8]. The first step in a data-driven design process is to identify which 
alloy properties are important to the desired application. Laser powder 
bed fusion of Al alloys had been plagued by sparse nucleation of grains. 
The result was that large grains formed during AM together with large 
intergranular stresses, the combination of which resulted in hot- 
cracking. To overcome this problem, Martin searched for candidate 
grain inoculant compounds that could form through chemical reactions 
during LPBF. Searching for grain-refining nanoparticles has improved 
solidification properties [76]. For example, silicon and carbon could 
react to form SiC particles that would force more homogeneously, 
densely packed grain nucleation throughout the material. However, if 
such compounds had lattices that were dissimilar to those of the 
aluminum alloy, large stresses could form at the interface of the in-
oculants and the alloy matrix, still leading to cracking. Hence, they 
searched not only for potential inoculants, but more specifically for in-
oculants with crystallographic lattice parameters that closely matched 
those of the base aluminum alloy. Martin’s study employed a search 
algorithm to search through 4500 different possible nucleants and 
identify those with the closest-matching parameters. Ultimately, 
hydrogen-stabilized Zr was found to be the best candidate. 

The same database mining process employed by Martin – identify the 
target properties, then search for the closest match – can be extended to 
many AM problems as well. Database mining was first introduced in 
materials science to predict stable compositions, or estimate material 
properties from composition. Database mining has been successfully 
implemented to predict stable crystal structures [77–79] and predict 
material properties as a function of composition [80–84]. Some specially 
designed search algorithms have also been designed for improved speed 
in automated searches [85]. Successes have been found in designing 
Heusler compounds using high throughput search methods [86]. Several 
reviews exist detailing early high-throughput searches for compositions 
with ideal properties [87,88]. The same search algorithms employed in 
these studies can be extended to AM cases. 

A limitation of database mining is that searches are limited to pre-
viously measured and/or calculated properties. Generally, information 
about the vast space of all possible materials is unknown. Traditional 
materials science and engineering approaches would turn to explicitly 
calculating or measuring the unknown points of interest, one at a time. 
Searching through compositions may be accessible for manufacturing 
processes like thin-film deposition where the composition can be 
adjusted continuously and with several species at once using well 
established methods. A combinatorial study of compositional changes 
for AM feedstock is hindered by the difficulty and expense of producing 
feedstock. 

For example, consider the cost of combinatorially alloying Ti with 
alloying elements {Al, V, Zr, Cr, Hf} and then testing printability. 
Explicitly creating all possible combinations of {Ti, Al, V, Zr, Cr, Hf} is 
feasible if using a coarse set of level choices for additions of alloying 
elements, but undesirable. There are 15,503 alloy combinations if 
alloying in steps of 1 wt% up to 15% total alloying elements from the 
choices above. 

However, using machine learning methods, the process of combi-
natorial exploration to find an optimal composition can be achieved 
without explicitly modeling each combination. For example, genetic 
algorithms (GA) can be used to augment many physics-based models. 
Genetic algorithms have been one of the most-used data driven ap-
proaches in materials science over the past few decades [79,85,89–93]. 
The principle of genetic algorithms is to evaluate the fitness of a popu-
lation of candidate alloys against a fitness function. The fitness function f 
( ⋅ ) is a method of evaluating how well a candidate alloy meets a criteria. 
Often in materials science the fitness function is evaluated by running 
models that can measure a material property based on composition. 
Examples include identifying stable crystal structure of a composition 
using DFT [77,79] and evaluating thermomechanical properties of an 
alloy using ThermoCalc [94]. Some additive-specific models include the 

model of Tan, which predicts dendrite arm spacing from composition 
[95]. The calculation of thermodynamic properties relevant to AM – 
such as vaporization temperature, coefficient of thermal expansion, 
solidus and liquidus temperatures – using the CALculation of PHAse 
Diagrams (CALPHAD) method [96] can also be a fitness function. For the 
sake of alloy design a model must be able to predict a material’s prop-
erties based on composition. In reality, however, models must also 
consider additional physics related to the composition, such as crystal 
structure, thermodynamic properties, interatomic potentials, and more. 

In using a GA for alloy design, a desired target property value must 
be identified. This value Ptarget is then formulated as a function of 
composition and process variables. Additionally, a method of measuring 
the property value as a function of composition and process variables X 
is needed; the models proposed previously (ThermoCalc, DFT, etc.) can 
serve as the evaluation step f(X). The goal is to find a material whose 
measured property closest matches the desired target property, or 

min
⃒
⃒
⃒
⃒f (X) − Ptarget

⃒
⃒
⃒
⃒. (16)  

As a thought experiment, consider various amounts of {Al, V, Zr, Cr, Hf} 
alloyed into Ti. These are the genes of the genetic algorithm. This is 
similar to a study completed by Li et al. [97]. Once a fitness function has 
been identified, the next step in a genetic algorithm is to represent 
candidate alloys as a chromosome. 

We can represent a chromosome as 

X = [χ1, χ2,…, χn]

where χ1 is the species and weight percent of the first element (titanium, 
in this example), χ2 is the species and weight percent of the second 
element, up to n elements. For example, Ti-6Al-4V would be represented 
as 

[0.9 Ti, 0.06 Al, 0.04 V]

The goal is to find the alloy with optimal dendrite arm spacing. First, 
a population of candidate chromosomes needs to be generated, either 
randomly or by design. Two examples from a starting population may be 

Alloy� 1 = [0.9Ti, 0.05Al, 0.05V]

Alloy� 2 = [0.9 Ti, 0.1 Zr]

The chromosomes produced from this initial population will serve as 
inputs to the fitness function. 

Genetic algorithms select chromosomes out of the current population 
– called the parent generation – to proceed to another generation of 
model assessment – called the child generation. Selection consists of 
keeping the best performing compositions, say the top 10%, and dis-
carding the rest, as determined by Eq. (16). Genetic algorithms find 
optimal locations in the design space by relying on the similarity hy-
pothesis. If one alloy is in the top 10% of chromosomes then it is possible 
that a similar alloy will also be high performing – it may even perform 
better. Once selection is done, the next step is to search the space near 
the best performing alloys from the parent generation. 

Genetic algorithms generate similar compositions from those 
selected in the parent generation by making alterations to genes. One 
operation is mutation, whereby genes are changed. For example, we 
could mutate alloy 1 by changing the composition: 

Parent Generation : Alloy 1 = [0.9 Ti, 0.05 Al, 0.05 V]

Child Generation : Alloy 1 = [0.9 Ti, 0.02 Al, 0.08 V]

where in the child generation the amount of V was increased, while the 
amount of Al was decreased. Another operation that may be performed 
is crossover where genes are added or interchanged. For example, one 
crossover operation may look like 
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Parent Generation : Alloy 1 = [0.9 Ti, 0.05 Al, 0.05 V]

Alloy 2 = [0.9 Ti, 0.1 Zr]
Child Generation : Alloy 1 = [0.9 Ti, 0.05 Al, 0.05 Zr]

Alloy 2 = [0.9 Ti, 0.1 V]

where in the second generation V and Zr have been interchanged. 
Selection, mutation, and crossover followed by model assessment 

and further selection, mutation, and crossover continues until the design 
criteria is met. A schematic of the GA process can be seen in Fig. 6. 

The similarity hypothesis supposes that similar points in the feature 
space have similar response values. That is, the similarity hypothesis is a 
tacit assumption of continuity. Therefore, the similarity hypothesis ap-
pears to be violated, and indeed, may be violated during perfunctory 
transformations–for example, first order phase transitions, such as 
melting, solidification, or allotropic phase transformations. But while 
first order phase transformations are discontinuous in the first derivative 
of energy with another thermodynamic variable (in the aforementioned 
cases, temperature), the energy continues to change continuously as the 
transformation proceeds. Therefore, if the target variable in an ML 
model is the thermodynamically stable phase, but the feature space 

includes temperature and excludes thermodynamic free energy, then a 
discontinuity will exist at the transformation temperature, similarity is 
violated, and the model will be unreliable near the transformation 
temperature. This failure of the similarity hypothesis is even more 
obvious in the presence of thermal hysteresis, where the model will 
become unreliable over a range of temperatures. However, both cases 
reveal a shortcoming in the formulation of the model, not in the model 
itself. In the former, the thermodynamic free energy, not the tempera-
ture, is the relevant variable, but the free energy is not tracked. The 
latter is further confounded by nucleation thermokinetics: surface en-
ergy and competing rates of nucleation formation and dissolution. 

Behavior like phase transformations bring good opportunities for 
researchers to introduce physics-informed features in their problems. If 
the ML algorithm is not informed of sigmoid-like behavior, or Dirac 
delta function, or other nearly singular points in the design space then 
tens of thousands of data points and very high dimensional models 
would be needed to ever figure out the nonlinearity itself. However, 
since many of these nonlinearities are known from established physics, 
researchers can inform the ML by applying nonlinear mathematical 
transforms that linearize the data. 

Fig. 6. An illustration of the alloy design process using a genetic algorithm. First, a target property Ptarget and an evaluation method f(X) for the alloy X are chosen. 
The evaluation method is most often a material modeling approach that can predict material properties based on composition. Then, a population of starting 
compositions are made. The model is run for each composition and an associated material property is measured. The predicted values are compared against the target 
value. If no material matches the target, then the genetic algorithm begins. The closest-matching compositions are selected to create a child generation. Crossover and 
mutation occurs for those compositions that were selected. In this way, a new population of compositions are created that are similar to the best-performing 
compositions from the previous generation. Model assessment and the genetic algorithm are then run again until a composition is found that meets the target 
property value. 
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A study by Liu et al. explored exactly this problem [98]. In con-
structing Gaussian Process Regression (GPR) ML models for the design of 
alloys and their processing, it was found that first informing the ML 
models of known nonlinear, physical mathematical relationships, such 
as sigmoid and logarithmic functions that describe the time and tem-
perature effects upon phase transformations that occur during precipi-
tation and/or going to solid solution. The GPR algorithm used to predict 
properties of the alloys - in their work, shape memory effect properties of 
shape memory alloys - had difficulty accurately modeling these 
boundaries when times (t) and temperatures (T) were featurized as they 
would be in the laboratory notebook. However, using physics-informed 
nonlinear transformations of the process features t and T, such as ln(t) 
and T × (1 − e− (T− θ))

− 1 where θ is the critical temperature for a phase 
transformation allowed the GPR model to work well on relatively few 
(several hundred) datasets. With such physics-informed approaches to 
ML, simpler ML algorithms can work lesser amounts of data because the 
ML algorithm is informed of the known nonlinearities in the physics of 
the design space a priori, in effect linearizing the relationships that the 
ML needs to model. The similarity hypothesis also needs to be consid-
ered when selecting the features and targets of the model. 

Genetic algorithms have been applied to alloy design for low and 
high temperature structural materials [80,99], ultra high strength steels 
[94], specific electronic band gaps [100], minimum defect structures 
[101], exploring stable ternary or higher alloys [91,102], and more. 
Chakraborti et al. wrote a review on the application of GA’s to alloy 
design through the early 2000s [103]. 

In addition to genetic algorithms, other machine learning algorithms 
have also been applied to classify and optimize alloy compositions. 
Anijdan used a combined genetic algorithm–neural network method to 
find Al–Si compositions of minimum porosity [101]. Liu et al. applied 
partial least squares to data mining of structure-property relationships 
across compositions [104]. Decision trees, which are discussed in the 
next section, have been implemented for a number of different alloy 
optimizations, such as predicting ferromagnetism [105] and the stability 
of Heusler compounds [106]. In the search for new alloys, a wide range 
of machine learning algorithms can be implemented to guide the entire 
experimental design process so that an optimized property is found as 
quickly as possible. In the next section, we focus on using ML in design of 
experiments. 

3.1.2. Design of experiments 
Design of Experiments (DOX) is the design of task(s) aimed at per-

forming parametric analysis [107]. Parametric analysis, broadly 
defined, is a method of mapping independent variables to corresponding 
dependent parameters. In materials science and engineering, process- 
property relationships are typically assessed using parametric analysis. 
Machine learning can reduce the number of experiments (i.e., tasks) 
needed to perform parametric analyses sufficient to characterize 
process-property relationships. Approaches such as sequential learning 
model relationships in parametric studies to discover regions of the 
parameter space that produce the most information about process- 
property relationships. 

In additive manufacturing research, process parameters such as laser 
energy, speed, build direction, composition, and layer height are varied 
to study their impact on material properties. Examples include relating 
build geometry to microstructure or surface roughness [108,109], 
temperature history to microstructure [110,111], substrate temperature 
to residual stress development [68,112], or even entire manufacturing 
processes to microstructure [113]. Other commonly performed para-
metric analyses in AM relate heat source parameters to part temperature 
history [114,115], microstructure [116,117], mechanical properties 
[118,119], and residual stresses [120,121]. 

Information in AM research is any observation of process-structure- 
property relationships. For example, observing that a set of laser pa-
rameters results in an equiaxed microstructure can be considered in-
formation because the researcher has gained an idea of the structure to 

expect from set processing conditions. Therefore, information gain is 
any experiment that reveals a previously unobserved process-structure- 
property relationship. Rigorous mathematical definitions of information 
and information gain have been defined, typically referencing back to 
Shannon’s original formulation of information theory [122]. 

Both engineering and scientific investigations of AM utilize para-
metric analysis. In science, tasks designed for information gain are 
performed until parametric analysis results in a theory or model for a 
process-structure-property relationship. In engineering, tasks designed 
for information gain are performed until an optimality criterion is met, 
such as maximum strength or minimum porosity. Both disciplines vary 
independent parameters and measure dependent responses until enough 
information about the underlying phenomenon is known to complete 
the parametric analysis with some predetermined level of certainty, 
variance, and/or precision. 

Traditional DOX approaches maximize information gain from per-
forming tasks by subdividing the design space a priori to maximize the 
likelihood of information gain from task to task. In these approaches, all 
pre-determined tasks are performed before parametric analysis is 
attempted. In machine learning DOX approaches, parametric analysis is 
performed after each individual task, and the next task to perform is 
determined based upon a statistical metric of the parametric analysis - as 
such, the likelihood of information gain incrementally improves as each 
task is carried out, and usually only a fraction (20–60%) of the number 
of tasks need to be performed to reach the established success criterion 
for the parametric analysis relative to the traditional DOX approaches 
[123,124]. 

For ML-based DOX, the first step is still to identify process-structure- 
property parameters of interest and to classify them as either inputs or 
outputs relative to the desired relationship that is to be determined, as is 
done in traditional DOX. As more parameters are added, the size of the 
design space grows. Once the scope of the design space has been defined, 
the next step is to generate an initial dataset (i.e., initial information). 
The first tasks can be designed with traditional DOX methods – often, an 
approach as simple as selecting an initial uniform sample from the 
design space. In addition to generating an initial dataset, a response 
function must be defined to interpret the relationship between the inputs 
and outputs. One example is a regression model of the process param-
eters (inputs) and material properties (outputs). A random forest algo-
rithm trains many regression algorithms, each on a subset of the 
experimental data. 

Random forest algorithms are ensembles of a type of simple regres-
sion algorithm called a classification and regression tree or a decision 
trees. Decision trees can be used for both classification and regression. 
Consider a design space that an engineer wishes to explore represented 
as a matrix, such as 

Feature 1 Feature 2 Feature 3 Property 1
x1,1 x1,2 x1,3 y1
⋮ ⋮ ⋮ ⋮

xn,1 xn,2 xn,3 yn  

where x1,1 is the first parameter setting for feature 1, x1,2 is the first 
parameter setting for feature 2, and y1 is the first property measurement 
for the associated position in the design space, out of n total measure-
ments. This design space could be represented as a matrix by 

B =

⎡

⎣
x1,1 x1,2 x1,3 y1
⋮ ⋮ ⋮ ⋮

xn,1 xn,2 xn,3 yn

⎤

⎦ (17)  

The rows of B represent different observations in the design space and 
the columns of B are different parameters or properties. The goal of 
parametric analysis is to map different values of x to a property y. 

Decision trees begin by taking a samples from the design space – rows 
in B – and computing a split in one of the features (columns) that best 
classifies the data point. Consider a set of three experiments that has 
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feature-property (x, y) pairings of (0.1,0), (0.2,0) and (0.3,1). The de-
cision tree computes every possible partitioning of x and computes a 
misclassification error called the Gini impurity, defined as 

IG(x) =
∑J

i
pi(1 − pi) (18)  

where pi is the percentage of samples classified into class i for each split 
out of J classes. For our fictional example, J = 2. Consider a split along 
the value x = 0.1 where values less than or equal to 0.1 are predicted to 
have y = 0 and values of x greater than 0.1 are predicted to have y = 1. 
The Gini impurity can be calculated for each side of the split. For the 
case of x ≤ 0.1, all the samples provided (only one sample, in this case) 
have an associated y value of 0. Therefore, the Gini impurity would be 

IG(x ≤ 0.1) =
1
1

(
1
1
− 1

)

+
0
1

(
0
1
− 1

)

= 0.
(19)  

The value 0 is the lower bound for the Gini impurity, thus this split 
produces perfect classification for values sorted into x ≤ 0.1. However, 
the Gini impurity for the remaining values becomes 

IG(x > 0.1) =
1
2

(
1
2
− 1

)

+
1
2

(
1
2
− 1

)

= 0.5.
(20)  

This higher value of the Gini impurity indicates that splitting feature x 
along the value 0.1 produces an imperfect classification. If the split was 
chosen along 0.2 instead, the Gini impurity for both sides would be 0, a 
perfect classification. The Gini impurity can be extended to an arbitrary 
number of classes, allowing decisions trees to behave as regression al-
gorithms as well as classification tools. 

Decision trees compute every possible partition for each feature in 
the dataset such that the misclassification error, as defined by the Gini 
impurity, is minimized. However, decision trees are highly prone to 
overfitting. Random forests overcome this overfitting problem by 
training many different decision trees, each on a subset of the total 
dataset. A random sampling, with replacement, of design space co-
ordinates (rows of B) are chosen, known as bootstrap aggregating, or 
bagging, and a decision tree is trained. Alternatively, or in addition to 
bagging, jackknifing selects a subset of features (columns of B) to pre-
vent overfitting to specific features. 

Training many different decision trees in this way allows a user to 
calculate uncertainty metrics for each prediction. The method of 
calculating uncertainty depends on how the random forest is being 
applied [124]. Once the random forest has been trained on the initial 
dataset, new points in the design space are given to the algorithm and 
the expected result is predicted. 

The predictions made for new points in the design space can be 
characterized by several different response functions. A study by Ling 
et al. employed three response functions: the maximum likelihood of 
improvement (MLI), maximum expected improvement (MEI), and 
maximum uncertainty. Each response function has its own benefits. The 
MEI selects the best experiment for maximizing (or minimizing) a target 
value. The MU, as the name implies, selects the experiment with the 
highest uncertainty in predicted result. The MLI chooses the experiment 
most likely to have a higher (or lower) target value compared to the best 
previously observed value. 

Often, parametric analysis is concerned with either exploring re-
lationships in the design space or optimizing on a property (either 
minimizing or maximizing the property). The random forest can be 
trained on m many subsets of the n rows of B. Then, new points in the 
design space are chosen and their associated property yn+1 is predicted. 
If the goal is to maximize a property, then the next experiment to run can 
be chosen by the MEI or MLI. If the goal is to explore the design space 
then it is useful to choose the design space coordinate based on the MU. 

Ling et al. trained a random forest to maximize the fatigue life of steel 
as a function of composition (among other test cases presented in the 
article) [125]. The features used in Ling’s study included composition as 
a function of nine different alloying elements (C, Si, Mn, P, S, Ni, Cr, Cu, 
Mo) as well as thirteen different processing steps such as heat treatment 
temperature. The total dataset used had 437 tests of steel fatigue as a 
function of the features. The random forest algorithm was used to choose 
experiments to run balancing maximum predicted fatigue life with un-
certainty in the prediction. Ling’s random forest approach found the 
composition and processing combination with the best fatigue life in 
fewer than 50 experiments out of the 437 possible options when using 
the MLI. The sequential learning workflow used by Ling, as well as the 
performance of differently trained random forest algorithms and 
response functions is shown in Fig. 7. 

Random forests have been applied successfully to a range of appli-
cations in materials science. They have been used to discover new 
thermoelectric materials [127]. They have also been used to model 
material properties such as thermal conductivity in half-Heusler semi-
conductors [128] and to break down fields for dielectrics [129]. A re-
view article detailing many optimization algorithms for design of 
experiments can be found in Shan et al. [45]. Adoption of machine- 
learning assisted design of experiments algorithms can rapidly in-
crease the rate at which the relationship between AM process parame-
ters and material properties are understood. 

3.1.3. Topology optimization and generative design 
Alloy design and process design are based upon process-structure- 

property relationships of materials, independent of part geometries. 
These optimizations reduce manufacturing costs and times and help 
attain targeted properties. Analogous optimization approaches can be 
applied to design the geometry-material-performance relationships of 
AM parts. Such approaches are called topology optimization methods. 
For structural materials and their parts, a common goal is to optimize the 
geometry to maximize the load bearing capacity, stiffness, or lifetime 
while minimizing the mass of the part. The ability to manufacture the 
unique, complex geometries determined by topology optimization al-
gorithms for (nearly) the same cost as simple geometries designed for 
subtractive manufacturing processes is one of the greatest promises and 
appeals of additive manufacturing. One of the frontiers in research 
driven by AM processing, in which materials and part topologies are 
simultaneously manufactured, is to integrate alloy processing optimi-
zation with topology optimization to create concurrent optimization 
methods. Thus, part performance becomes integral to the material 
manufacturing optimization process in AM. Hence, we proceed to 
introduce topology optimization to the materials researcher while also 
discussing potential uses for machine learning to advance topology 
optimization. 

Topology optimization can be applied for several optimization ob-
jectives, including compliance minimization, stress constraint or natural 
frequency maximization. Manufacturing constraints such as overhangs 
and support structures found in AM have also been added to the opti-
mization process and improve the applicability of the result [131–135]. 
Support structure optimization that minimizes the amount of material 
used in supports has also been researched [136–138]. Other additive 
specific algorithms have been designed for optimizing density of parts 
[130]. By determining the ideal material layout, the final design can 
maximize performance for a given weight, minimize weight for an 
objective function, or reduce manufacturing costs by reducing the ma-
terial used. However, TO is a local optimization method. Global design 
optimization usually requires statistical analysis of many TO 
simulations. 

ML can help reduce the computational time necessary for a TO 
analysis. This approach allows for faster convergence to a TO result, as 
well as produces multiple designs efficiently for a researcher to better 
explore the possible design options. The process of producing many 
outputs for a given set of conditions is known as generative design. 
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One approach is to change the topology of a region of a part by 
applying local filters to CAD models; mathematically, these filters are 
the same ones shown in Eq. (3). A physical representation of a filter 
matrix in 2D and 3D can be seen in Fig. 8. Topology optimization pro-
ceeds by generating a CAD model of an AM part and modeling its per-
formance, such as testing performance under mechanical load through 
an FEA simulation. Filters are applied to the CAD mesh that selectively 
remove material from the part. Then, the mechanical performance of the 
new part is modeled, followed by further material removal. This process 
proceeds until either a minimum weight/volume condition is met or the 
mechanical performance of the part is degraded. 

These filters, filters that identify which material to remove, can be 
learned by a type of machine learning algorithm called a convolutional 
neural network (CNN). Convolutional neural networks have been found 
to be well-suited for data containing multiple arrays, especially for 
image recognition tasks [142]. The input is separated into different 
channels, such as RGB for three channels of a color image input, and 
manipulated through different stages of the network, called layers. 
Commonly used layers in these networks include convolutional, pooling, 
and fully connected. Convolutional layers are divided into varying 
feature maps that abstract the input to smaller, localized regions for 
analysis. Pooling layers clusters the outputs from the previous layer and 
outputs either the maximum or average value from the cluster, reducing 
the dimensionality of the problem. Fully connected layers connect the 

outputs from the previous layer with the inputs of the next. 
Using a convolutional neural network, Cang et al. and Banga et al. 

present similar approaches to produce “one-shot” tools for two- and 
three-dimensional TO, respectively [139,143]. One-shot tools produce 
an optimized structure directly from a starting topology, as opposed to 
iterative tools that require multiple passes of the algorithm to reach an 
optimized state. The inputs of the CNN were aspects of the initial part 
geometry and expected loading conditions. Features given to the model 
included the force experienced by the part, fixed boundary conditions, 
minimum mass and density values, and the locations of mass in the part. 
Their training and validation databases a dataset of optimized topol-
ogies generated via traditional TO. The goal of the CNN was to predict an 
optimized geometry for a starting structure in one pass through the 
model using knowledge of the loading conditions and part geometry. 
The results from both works show similar accuracy between the “one- 
shot” result and the ground truth found from traditional non-ML 
methods. Such methods greatly reduce the computational time, allow-
ing for greater design exploration before finalizing the result. The ar-
chitecture for the CNN used in Banga et al. can be found in Fig. 9a. 

An extension of the convolutional neural network is the generative 
adversarial network (GAN). The methodology for GANs involves two 
neural networks in competition with each other: a generator and a 
discriminator. The generator attempts to create data similar to that of an 
existing database. The discriminator has access to the database and 

Fig. 7. Application of a random forest algorithm to find 
optimal material candidates for four different datasets: 
magnetocaloric materials, superconducting materials, 
thermoelectrics, and steels. A random forest algorithm was 
used with four different response functions: maximum 
likelihood of improvement (MLI), maximum expected 
improvement (MEI), maximum uncertainty (MU), and the 
COMBO Bayesian optimization approach [125,126]. The 
algorithm in (a) was used to speed up the experimental 
design process. In every case, the optimal material for the 
application in the dataset was found more quickly through 
sequential learning than through random guessing. The 
random forest approach was compared against COMBO, 
another sequential learning tool. The figure in (b) demon-
strates how much more quickly the random forest algo-
rithm was able to find an optimized state than random 
sampling of experiments to perform.   
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discerns which data samples are from the database and which are from 
the generator [140]. The goal of the generator is to generate data that 
the discriminator cannot accurately classify into database or generated 
datasets. As the discriminator improves at discriminating between 
artificially generated data and user-provided data, the generator learns 
to produce better and better artificially generated data. The ultimate 
goal is a generator network that learns to produce high-quality optimi-
zations of an input topology. A flow diagram of a GAN from Crewswell 
et al. can be found in Fig. 9b. Further information about the applications 
of GANs, including image synthesis and superresolution, can be found in 
Crewswell et al. [140]. 

Yu et al. uses a combined CNN-GAN to perform a superresolution for 
TO, upscaling a coarse mesh result to a higher resolution without the 
added computational time to directly compute the high resolution result 
[144]. First, a CNN was trained to predict low-resolution optimal ge-
ometries based on provided boundary conditions. The CNN used infor-
mation such as minimum mass fraction, location of applied load, and 
fixed boundary conditions to predict the best topology at a low resolu-
tion. Then, a GAN was trained with random sampling of low and high 
resolution TO results as inputs and ground truth database, respectively. 
The GAN was trained to generate high resolution topologies from low 
resolution inputs. The low resolution output of the CNN was given to the 
generator; the generator then produced a high resolution topology from 
the given low resolution input [144]. The results showed very high 
agreement between the generated structures and a set of training 
structures generated using an open source code [145]. The result from 
this combined network was within 3% of the expected ground truth 
pixel values and produced it in 0.06% of the time compared with 

traditional TO [144]. 
For generative design, genetic algorithms and GANs are well suited 

as both architectures are designed to produce multiple optimal designs. 
Lohan et al. and Zimmerman et al. use the genetic algorithm to effec-
tively search for optimal solutions for heat transfer and fluid optimiza-
tion [146,147]. Using the genetic algorithm, high performing designs 
were iterated upon in subsequent steps, producing multiple optimal 
designs for the researcher to choose. As an example of a GAN used in 
generative design, Oh uses data mining to collect wheel examples to 
train a GAN and generate unique designs [141]. The network generates a 
random set of input variables to influence a topology optimization stage 
of the network. Through training, the generator network attempts to 
produce new designs similar to the examples collected through data 
mining. The discriminator network is then trained using the sampled 
outputs from the generator network and the data mined examples to 
determine which are generated and are from data mining. Through 
many training iterations, the generator network produces designs 
indistinguishable from the database. Examples of the generated designs 
from this network are shown in Fig. 9c. 

The examples provided only present current research incorporating 
machine learning in TO and is not an exhaustive review of all applica-
tions of TO. A general review of topology optimization advancements for 
additive manufacturing can be found in Liu et al. [135]. 

3.2. Machine learning assisted modeling of additive manufacturing 

As previously discussed, the design space of AM experiments is often 
vast (e.g., Fig. 1). While the design of process parameters is often inte-
gral to the material design methods reviewed in the previous sections, 
there are some additional process-centric engineering objectives where 
machine learning methods may also be beneficial. This section reviews 
the use of machine learning algorithms to aid in computational design of 
additive manufacturing process developments. Martukanitz et al. pub-
lished a full ICME investigation of AM [148]. There are two modeling 
scenarios that plague the advancement of AM: the case where a model 
exists but current numerical methods are too expensive to simulate the 
model; or the case where a model does not exist. Put slightly differently, 
in either case y = f(x) exists but cannot be computed in a reasonable 
amount of time; or y = f(x) does not exist. 

Machine learning algorithms have addressed both these cases. In the 
first case, ML algorithms provide an alternative numerical method for 
calculating y = f(x) based on experimental measurements of y and x, or 
based on the results of previously run simulations. Machine learning 
algorithms have also been developed to help visualize trends in high 
dimensional spaces, allowing researchers to study complex relationships 
and ask deeper questions. For the second case, ML algorithms provide a 
form of y = f(x) from observations (measurements) of the relationship 
between y and x. 

3.2.1. Machine learning as numerical methods for modeling 
There is a suite of numerical methods that have been adopted by the 

materials science community for computing models of material phe-
nomena. Finite element methods are some of the most common 
methods. Feedstock, heat source, and melt pool dynamics have been 
modeled by finite element methods [149–151] or finite volume methods 
[152]. Some AM-specific tweaks to the finite element method have been 
developed, such as the quiet/inactive method of Michaeleris et al. [153]. 
They have also been applied to microstructure development [111]. A 
review of finite element methods for AM can be found at [154]. Models 
of grain growth in AM have been solved using both phase field numerical 
methods [155–158], and cellular automata [95]. Francois et al. provide 
a review of ICME approaches across spatiotemporal scales [159]. 

The success of these numerical methods have been in solving com-
plex thermomechanical problems for engineering application. In AM, 
the number of models that need to be simultaneously considered/ 
computed and the scale of the manufacturing process causes the 

Fig. 8. Examples of filters that are applied to CAD meshes to change the ge-
ometry of the part [130]. The filters can be applied to remove material for 
weight reduction or add material to prevent part warpage during 
manufacturing. 

N.S. Johnson et al.                                                                                                                                                                                                                             



Additive Manufacturing 36 (2020) 101641

18

Fig. 9. The architectures for convolutional neural networks (CNN) and generative adversarial networks (GAN) are visually described. (a) The network architecture of 
the CNN used in Banga et al. with the voxel and gradient input data [139]. The dimensions are described as Height × Length × Width with channels below their 
respective layer. (b) The models and data used for training a generator and a discriminator in a GAN [140]. (c) Examples of Generated designs produced from GAN 
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computational complexity of these methods to grow quickly. Machine 
learning can make the modeling process more efficient through three 
primary applications: .  

• Determine a priori which models not to run.  
• Reduce dimensionality by discarding inputs or physics that are not 

relevant or that do not have an appreciable impact.  
• Compute the same relationship using ML as the numerical method, 

instead of using explicit methods like FEA, cellular automata, etc. 

In the case that models can be run, but are time-intensive, it be-
hooves the researcher to run as few models as necessary to understand 
the material response. ML can identify which models will produce the 
most useful information, informing model choice to the researcher. In 
another case, ML can be used to identify physics that do not significantly 
impact the outcome of a model. Reduced-physics models can then be 
created with a reduced computational burden. In some cases ML can 
compute the same result as the explicit model with significantly less 
computational cost (under certain conditions and assumptions). 

Dimensionality reduction algorithms identify which parameters are 
relevant to model in an ICME approach and which are not, enabling 
future ICME investigations to achieve the same result faster. Materials 
science has long had a need for dimensionally reduced, computationally 
accurate models. Some of the first applications of machine learning in 
materials science was for dimensionality reduction. Dimensionality 
reduction has been applied to find process-structure-property relations 
across multiple material length scales [78,160–162]. Homer applied 
dimensionality reduction to relate the impact of local atomic environ-
ments on mesoscale properties like atomic mobility at grain boundaries, 
demonstrating the benefit of the technique for advancing ICME [163]. 

Statistically driven approaches can focus on the parameters in x that 
strongly impact AM model outputs, leading to a dynamically guided 
design of experiments. In design of experiments, a random forest is 
trained on previously completed experiments. These are the rows of the 
matrix B in Eq. (17). Then, new points in the design space that have not 
been observed are given to the algorithm and predictions about the 
output are made. Dimensionality reduction using random forests pro-
ceeds differently. 

The random forest is trained on subsets of the data in B. The 
importance of a feature in the dataset is tested by randomly shuffling the 
values of one of the columns of B. If randomly shuffling the values of a 
given feature does not significantly impact the prediction accuracy of 
the random forest then it is likely that the feature is not important. 
Towards Data Science provides a more in-depth tutorial on using 
random forests for feature importance determination [164]. This 
approach can be applied in computational models that consider many 
different physics. Several models are run under different initial condi-
tions in the design space. The entries of the matrix B are the inputs and 
predicted outcomes of the model. If the exclusion of a model input does 
not significantly impact the random forest’s prediction of the model 
output, then that input can likely be ignored in future simulations, 
saving computational time and reducing the number of models that need 
to be run. 

Kamath used a random forest algorithm to screen out irrelevant 
modeling parameters for predicting maximum density of additively 
manufactured parts [165]. Kamath started with an experimental dataset 
of manufacturing parameters and multiple modeling methods. An 
Eagar–Tsai simulation of a Gaussian laser beam on a powder bed was 
used to model thermal conduction during manufacture, as well as the 
computationally more expensive Verhaeghe model. The Eagar–Tsai 
model originally began with four inputs (laser power, speed, beam size, 
and powder absorptivity) and a design space of 462 possible input 

combinations. Kamath used random forests to determine which input 
was most important for achieving fully dense parts. If simulations are 
time-intensive to run then 462 different simulations may be out of the 
question. The computational dataset was complemented with an 
experimental dataset of measured melt pool widths at various printing 
conditions. Identifying which parameters do not impact the final result 
reduces the size of input combinations, therefore reducing the number of 
computations or experiments to be performed. 

Kamath identified that laser speed and power were the most 
important inputs out of the four to determine melt pool depth and shape. 
Now that the important physics have been identified, the researchers 
can proceed to the more expensive Verhaeghe model with knowledge of 
what parameters to vary. After determining the most important inputs, 
the same regression tree was applied to find optimized manufacturing 
conditions for fully dense parts. However, instead of identifying which 
features impacted the model standard deviation, the machine settings 
that maximized y were found. 

A final technique for reducing the burden of computational models 
requires expressing model data in a matrix and performing matrix 
factorization. As before, model inputs can be formed into a matrix, X, 
whose rows are coordinates in the design space. Matrix factorization 
techniques represent correlations in large datasets in a simplified way. 
The matrix XTX is a measure of covariance within X. The matrix XTX can 
be very large due to the design space of additive manufacturing. One 
type of matrix factorization, called Principal Component Analysis (PCA) 
represents the data matrix X as 

X = UΣVT (21)  

where the columns of U are the eigenvectors of XXT and are called the 
principal components of X. Similarly, the columns of V are the eigen-
vectors of XTX. The matrix Σ is a diagonal matrix whose entries are the 
singular values of X. The first singular value, which corresponds to the 
first column vector in V, has the highest variance (most information); 
the second singular value, the second most; and so on. Therefore, 
regression can be performed on one, a few, or many of the principal 
components to predict new model results using considerably less data 
than present in X, but with a minimal loss of information and a minimal 
reduction in model accuracy. Materials science studies have used PCA 
previously to re-represent large datasets in simpler forms, such as pre-
dicting the formation energies of crystal structures from a lower 
dimensional space [166]. A review of applications of PCA in materials 
science can be found at [167]. 

In additive manufacturing, PCA can serve to reduce the number of 
features in the design space. The new vectors can then be used as 
regression model inputs for prediction of material properties based on 
trends observed in dataset X. 

3.2.2. Machine learning for visualizing trends in the design space 
Visualizing relationships across high dimensional spaces helps re-

searchers develop an intuitive understanding of data relationships that 
exist, an intuition that helps guide data preprocessing, feature engi-
neering, model selection, and model training. However, visualizing an n- 
dimensional distribution is difficult. Process maps are commonly 
employed in AM to visualize 2D slices of the n-dimensional AM design 
space [42]. The Ashby plot is a well known generalization of process 
maps in materials science. Ashby plots show material properties as 
functions of two design coordinates, such as plotting mechanical 
strength of various alloys as a function of density and cost to produce. 
The process maps in welding and AM are more specific versions of Ashby 
plots. Process maps chart the possible values of machine inputs and 
identify regions of the design space with similar properties. A commonly 
employed process map in AM of Ti-6Al-4V describes grain morphology 

network in Oh et al. for the design problem shown [141]. 
Image in (a) taken from [139]; image in (b) taken from [140]; image in (c) taken from [141]. 
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as a function of solidification velocity R and temperature gradient G 
[168]. Extending process maps to n many process variables would 

require 
(

n
2

)
plots. Defining and examining metrics of similarity in an n 

dimensional space can reveal trends in a human interpretable way 
without relying on multiple 2D process maps. 

t-distributed Stochastic Neighborhood Embedding (tSNE) is a visu-
alization technique that measures distances in a high dimensional space 
and then projects data points onto a two dimensional plot. The similarity 
of all data points in the design space with each other is used to fit a 
distribution of similarities. The tSNE algorithm begins by fitting a 
probability distribution to all x’s contained in a dataset. Relationships in 
n dimensional space are assessed through a kernel function κ(x, x′) that 
measures similarity between points in the design space. A commonly 
employed kernel is the Gaussian kernel 

κ(x, x′) =
1
̅̅̅̅̅̅̅̅̅̅
2πσ2

√ exp
[
−

x − x
′

2σ2
]

(22)  

where σ is a user-specified or fit standard deviation in the distribution of 
points in the design space. This kernel function assesses distance in the n 

dimensional space and assigns a similarity value between 
[
0, 1∕

̅̅̅̅̅̅̅̅̅̅̅
2πσ2

√ ]
. 

After the n dimensional dataset is fit, then a 2 dimensional coordinate 
x* is assigned to each x. The reason for choosing a 2 dimensional co-
ordinate is so that the final result can be visualized on a 2D plot. The 
tSNE algorithm fits a probability distribution to the n dimensional data 
set first, then assigns values to each x* such that they have the same 
probability as the associated high-dimensional x. Once the probability 
distributions have been assigned, the x* values can be visualized on a 2D 
plot to investigate trends. 

The benefit of tSNE is that points that are close together in the n 
dimensional space appear close together on the 2 dimensional plot. This 
gives AM modelers an idea of how machine inputs and material behavior 
are distributed in the n dimensional space through a 2 dimensional 
visualization. Traditional process maps provide similar input/output 
relationships but are limited in the amount of processing parameters 
they can interpret at once. A comparison of process maps and tSNE is 
shown in Fig. 10. 

3.2.3. Machine learning to create models of additive manufacturing 
processes 

Another problem, equally important to solving models, is the crea-
tion of models for additive manufacturing problems. Scientists cannot 
engineer the additive manufacturing process without an understanding 
of how process parameters (inputs) impact material properties and 
performance (outputs). The generation of models in AM is a difficult task 
due to the large amount of physics that can be incorporated. 

Many traditional material models from science and engineering have 

been applied to additive manufacturing, including thermal history 
models of heat transfer through the part [153], residual stress build up 
during manufacturing [170,171], and thermal signatures such as cool-
ing rate and temperature gradient [115,172]. King et al. provide a re-
view of the physics of AM modeling [173]. 

Phenomenon that are difficult to study experimentally, such as flow 
within the melt pool, are best studied through modeling approaches. 
Though expensive, full-physics modeling is often necessary to under-
stand how physics at different scales interact to impact the AM process. 
If the computational expense of a simulation is too high then performing 
simulations at all relevant manufacturing conditions can be infeasible. 
While it is useful for optimization and visualization, reduced order 
models are unlikely to capture the full dynamics of solidification in AM. 

Within the context of the literature reviewed herein, a surrogate 
model is a regression model that estimates the results of high-cost sim-
ulations. Surrogate models are regressed on the inputs and results of 
previously run simulations. Then, the surrogate model interpolates 
simulation results at new coordinates in the design space. Surrogate 
models preclude the need for running computationally expensive sim-
ulations for every possible manufacturing condition. Formulating sur-
rogates can be as simple as performing linear regression between 
simulation inputs and results, but are often more complex. The accuracy 
of a surrogate model is dependent upon how many previous simulations 
have been run and at how many different points in the design space. 

Tapia et al. built a surrogate model for laser powder bed fusion of 
316 L stainless steel. They were concerned with predicting the melt pool 
depth of single-track prints solely from the laser power, velocity, and 
spot size [174]. The dataset used to build the surrogate was computa-
tionally derived, based on previous simulation methods used by the 
same research team [175]. In particular, they used the results from a 
computationally expensive but high-accuracy melt pool flow model of 
Khairallah et al. [150]. They ran powder bed simulations at various laser 
powers, velocities, and spot sizes, and the model told them the depth of 
the melt pool, amongst other information. The datasets provided enough 
information for a surrogate model to be trained to predict simulation 
results (Fig. 11). 

To build their surrogate model, Tapia used a machine learning al-
gorithm known as a Gaussian process model (GPM). A common model 
assumption in Gaussian process modeling is 

z(x) = y(x) + ϵ(x) (23)  

where y(x) is the approximation (surrogate) of the simulation process, 
ϵ(x) is a stochastic, randomly distributed noise in measurement, and z(x) 
is the value given by a simulation. The primary goal in GPMs is to find 
model parameters for the mean process y(x) and a covariance function 
κ(x,x′), which is a function of similar form to Eq. (22). Fitting a Gaussian 
process model often begins with assuming a model function for 

Fig. 10. Comparison of a traditional process map and tSNE 
plot. (a) A process map for predicting microstructure 
characteristics based on absorbed power and deposition 
velocity in electron beam wire feed additive 
manufacturing. (b) A tSNE plot from Ling’s study showing 
clusters of samples with similar fatigue strengths [124]. 
While process maps can be useful for predicting 
manufacturing outcomes they are limited by only showing 
the behavior of two process parameters at a time. The tSNE 
algorithm can cluster data based on many manufacturing 
inputs simultaneously and then display that information in 
a 2D plot, allowing engineers to study how processing pa-
rameters lead to good or bad material properties. 
Image reproduced from Gocket et al. [169].   
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covariance, fitting the model parameters such as σ to the observed 
values z(x), then using those model parameters to predict simulation 
results y(x) at other locations in the design space. 

Tapia used Bayesian statistics to develop a probabilistic model that 
predicted melt pool depth from simulation inputs. They were able to 
successfully predict the outcomes of both high-fidelity simulations and 
experimental measurements solely by analyzing trends in previously 
obtained results. In particular, they were able to accurately predict the 
melt pool depth at a value that had never been observed before, either 
computationally or experimentally. For future investigations, pre-
dictions by the surrogate model can be relied upon instead of running a 
simulation or experiment. Regression models such as this provide en-
gineers with faster routes toward optimized manufacturing states by 
predicting manufacturing at a wide range in the design space based on 
only a few initial experiments. 

Gaussian Process Models provide robust uncertainty metrics on the 
predictions they make. Uncertainty estimation is important in materials 
informatics because it enables scientists to know how confident their 
models are in predictions in various regions of parameter space. Some 
machine learning models do not have straightforward ways of assessing 
model error [176]. 

Another benefit of GPM is that it aids in inverse design and design 
space visualization. GPMs can explicitly identify regions of the design 
space that will maximize or minimize a value. In the case of Tapia et al. 
response surfaces were created from the GPM that visualized the depth 
of melt pools as a function of laser power and speed. Doing so allows 
engineers to identify regions of the design space that provide specific 
material responses, an important tool in optimization for additive. 

Machine learning is not only limited to ex situ experimental 

investigations or modeling approaches. Ideally, machine learning can be 
used to solve multiobjective optimization functions where multiple as-
pects of the AM process are optimized at once – energy density, melt 
pool shape, heat transfer, grain growth, and the list continues. Models 
can be created that solve this multiobjective optimization problem and 
present to the engineer what an optimal manufacturing process looks 
like. Actually creating that optimal process will require tight control of 
the manufacturing process. Machine learning models trained on corre-
lations between build parameters, the dynamic response of the system, 
and the final part properties can be combined with real-time computer 
vision to simultaneously observe, characterize, and control many 
different aspects of the manufacturing process. 

3.3. Process monitoring and control 

The numerousness of signals to measure in situ for AM warrants use 
of quick, efficient, and robust signal processing methods for process 
monitoring, feedback, and control. These signal processing algorithms 
are closely related to machine learning. They serve as tools in their own 
right, and can also pre-process data for use in other machine learning 
applications, like clustering and regression. Computer vision is one class 
of image recognition algorithms that has been developed for automated 
feature identification in signals. Intelligent computer vision uses ML 
algorithms to identify objects and features in a wide variety of data 
types. We proceed to discuss the potential uses of data analytics and ML 
to advance our ability to directly study and control AM process 
technologies. 

It is important here to reassert the importance of the relational hy-
pothesis. If one tries to estimate a property from an in situ measurement 

Fig. 11. Input data, response surface y(x), and error ϵ(x) of Tapia’s study in predicting melt pool depth for laser powder bed fusion [174]. (a–b) The input data used 
to train a Gaussian Process Regression model for predicting melt pool shape and depth. They started with a sparse sampling of the design space to build the model. 
(c–d) The Gaussian process model predictions for melt pool depth as a function of two input parameters y(x) (left) and the associated prediction errors ϵ(x). 
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one must ensure that the signal being acquired has features that corre-
late to the property. Otherwise, a machine learning algorithm may end 
up identifying spurious correlations or uninterpretable relationships. 

3.3.1. In situ process monitoring and feedback 
In situ monitoring, feedback, and control has been consistently 

ranked as one of the most-needed technologies for advancing additive 
manufacturing [177–179]. The combination of rapid solidification and 
the small length scales of AM solidification can make traditional process 
monitoring approaches difficult. Furthermore, there are many pro-
cesses/problems to monitor for during the manufacturing process, with 
equally as many sensor types for monitoring as shown in Fig. 12. Ma-
chine learning can fill in gaps that leverage correlations and relation-
ships from previous measurements, observations, and responses. 

Process monitoring involves acquisition of real-time signals that can 
reveal information about a wide variety of phenomenon during 
manufacturing. Many developments of in situ process monitoring tech-
nologies are focused on controlling (a) microstructure growth or 
development; or (b) the prevention of defect formation. 

There are in-situ experiments being performed to inform models of 
the additive manufacturing process. In situ experiments advance our 
understanding of AM, as well as advance feedback and control for AM, 
through several outcomes. In some cases, in situ studies reveal what a 
‘good’ or ‘bad’ AM process looks like. They also inform researchers of 
those conditions that must be met to achieve a desired outcome or 
prevent the formation of a defect. In situ experiments also push the 
development of sensor technology for AM. While sensor technology will 

not be covered in this review it is an important topic for the advance-
ment of AM technology. Purtonen et al. wrote a review of common 
sensing methods for laser based manufacturing [180]. 

Early experiments using in situ monitoring for AM focused around 
either the ability to measure thermal signatures accurately or relating 
key features of the solidification process to important material proper-
ties. McKeown et al. has used dynamic transmission electron microscopy 
to measure solidification rates in powder bed AM [181]. Bertoli et al. 
have also characterized cooling rates using high speed imaging [182]. 
Raplee et al. have used thermography to monitor the solidification and 
cooling rates of electron beam powder bed fusion, relating the temper-
ature profiles to defect and microstructural characteristics [183]. 
Distortion of parts due to thermal cycling was investigated by Denlinger 
et al. by means of thermocouples in contact with the build substrate 
[121]. Guo et al. used synchrotron X-ray imaging to characterize the 
dynamic behavior of spatter during laser-based AM [184]. Leung et al. 
likewise used synchrotron X-ray imaging to characterize defect forma-
tion and molten pool dynamics during laser powder bed fusion [185]. 
Based on the behavior they observed, Guo et al. were able to suggest 
control mechanisms for minimizing spatter during manufacture. Ever-
ton et al. provide a review of in situ monitoring for metal AM [186]. All 
of the data being recorded in these studies can be used as features for 
training machine-learning based feedback and control systems. The class 
of algorithms used in these cases is called computer vision. 

The type of data being collected in situ is often in the form of time 
series or image data. In computer vision, as with traditional feedback 
and control, algorithms are used to identify deviations from a desired 

Fig. 12. A few examples of data types, data sensors, and features to detect in a laser powder bed fusion manufacturing process. The wide range of signals to monitor 
then control makes feedback and control in AM especially difficult. Computer vision techniques can be applied to automatically detect features of interest across 
multiple data types and data sensor simultaneously. 
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signal. The power of computer vision approaches is their ability to 
simultaneously monitor and identify signal changes across multiple 
sensor types, as well as multiple different types of deviation from a 
single sensor. Examples include identifying a spike in temperature or a 
sharp change in intensity in an image indicating a deviation from a 
desired processing conditions. Image processing filters can be used to 
selectively modify or extract features in AM data. Image processing fil-
ters are mathematically analogous to those introduced for topology 
optimization (Section 3.1.3). 

A filter is implemented as a mathematical operation, a kernel, 
applied to a window of time series data or an area of pixels in an image. 
For images, as previously discussed in Section 2.3, filters attempt to use 
local spatial information and a priori knowledge of the expected prop-
erties of the image to improve image quality and extract features, e.g., 
distinctive characteristics such as edges or regions of similar intensity 
(domains) that represent the boundaries or spatial extents of objects, 
phases, etc. 

AM processes span several orders-of-magnitude in both length and 
time scales from ejected particles moving across the field of view in 
milliseconds to multi-hour builds and sub-millimeter melt pools to part- 
scale thermal distortions. Practically, then, in situ monitoring requires 
compromises in data collection rates and resolutions, and data pro-
cessing filters are used to reduce noise and extract features, such as melt 
pool width, from the as-collected data. A comprehensive review of 
image filters is beyond the scope of this review, so the interested reader 
is directed to the many works on this topic, such as Vernon et al. [187]. 
However, three use cases are especially common and worth discussion 
here: reduction of high-frequency noise, also known as salt-and-pepper 
noise; additive noise reduction; and edge detection. 

High frequency noise is characterized by sudden changes in intensity 
relative to the surrounding field. Although there are a number of 
possible causes, this may be caused by pixel-level variability or insuffi-
ciency in the detector, e.g. “dead pixels” or excessive gain. Median and 
conservative filters are commonly used when the fraction of noise pixels 
is large (1–10%) and small (<1%), respectively. 

Additive noise, unlike high frequency noise, is a result of insufficient 

counting statistics, which may result from insufficient exposure time, or 
detector efficiency. A gaussian filter adjusts the intensity of each pixel 
according to the weighted intensities of neighboring pixels. Unlike 
median and conservative filters, a gaussian filter will soften edges, 
making adjacent domains less distinct. 

Filters also have applications beyond noise reduction, primarily in 
object and feature detection. Detecting phenomena of interest during 
manufacturing is the first step to feedback and control mechanisms. 
Edge detection captures local changes in intensity to identify transitions 
between adjacent domains. Laplacian or Laplacian of Gaussian (LoG) 
filters themselves are sensitive to noisy images, identifying spurious 
edge artifacts, but are used as part of larger algorithms, such as Canny 
edge detection [188]. Canny edge detection include noise reduction to 
mitigate artifacts of LoG filters, and can be used to monitor melt pool 
shape and identify other features, such as unmelted powder particles 
attached to the build surface. Canny edge detection, along with other 
feature extraction algorithms, can be used to extract the features that 
characterize the build and can be used as part of a larger machine 
learning workflow to classify build quality. For example, these features 
can be used in learning algorithms to correlate characteristic features, 
such as melt pool width and hatch spacing, with particular behaviors, 
such as the formation of lack of fusion defects, in the manufacturing 
process. In this case, identification of a feature, or set of features, may be 
sufficient to indicate a particular process outcome. 

Template matching is a computer vision method that can be used for 
automatic identification of common patterns. It involves the comparison 
of an unclassified input to a database of pre-identified patterns. For AM, 
template features include abnormal melt pool morphologies [189], in-
clusion of unmelted powder particles [190], and denudation near the 
melt zone [191]. The scale-invariant feature transform (SIFT) [192] and 
a variant, “Speeded-Up Robust Features” (SURF) [193] are both feature 
identification algorithms that can be used for template matching. 
Another template matching algorithm is the bag of visual words or 
dictionary method [49]. A collection (dictionary) of typical features 
from the AM process can be built based on features obtained from filters. 
The features measured in situ are compared with dictionary entries. If an 

Fig. 13. Common activation functions in artificial neural networks (NNs) that introduce nonlinearity into the NN. The sigmoid is the archetype activation function 
because the closed form solution for the derivative of the sigmoid, which is used during model fitting, is an excellent pedagogical tool; however, the rectified linear 
unit (ReLU) is, at present, the most common activation function in the hidden layers of NN. Uses for the other activation functions are provided in the text. 
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in situ feature matches a defect-indicative feature from the dictionary, 
then it is likely a defect has formed during manufacturing. 

Neural networks (NNs) are particularly well-suited to handle fea-
tures extracted from images, or simply the images themselves. There are 
many references that describe neural networks in detail, such as the 
work of Hastie et al. [194], and an increasing number that address the 
specific challenges associated with neural networks in materials science 
[195]. There are several properties of NNs that are worth repeating here, 
however. Each layer in a NN is connected to the next layer through an 
affine (linear) transformation. This step stretches, scales, and skews the 
input vector. 

z(i+1) = θTix(i) (24)  

where z(i+1) is the input into the (i + 1) layer and x(i) is the output from 
the previous, ith layer. Then, an activation function, such as those 
summarized in Fig. 13, introduces a non-linearity that warps/distorts 
the vector input to that layer. 

x(i+1) = f
(
z(i+1)) (25) 

The model parameters θT
i are regression weights that associate out-

puts from each layer x(i) to subsequent layers z(i+1). By increasing the 
depth of the NN, that is, adding additional layers, and the width 
(number of nodes) of those layers, a NN can be used to approximate any 
function, making them powerful regression and classification tools 
[196]. However, the general sparsity of materials data coupled to the 
complexity of process–structure–process relationship requires an un-
derstanding of the tradeoffs and requirements of using NNs in materials 
science, and in AM more specifically. Beyond the basics of model ar-
chitecture, overfitting and the bias–variance tradeoff that is part of any 
machine learning model, a basic understanding of the role of activation 
functions can help to develop an intuition for the use of NN in materials 
and manufacturing. 

An early use of NNs was in classification. The perceptron, logistic 
sigmoid (or simply, sigmoid), and hyperbolic tangent are all activation 
functions that choose between two options (0 or 1, or in the case of tanh, 
− 1 or 1). While a binary option may seem overly limiting, even multi-
nomial classification can be broken down into a sequence of such binary 
classifications: A or not A; and if not A, then B or not B; and if not B, C or 
not C; etc. However, such a serial solution will require more layers and, 
with more layers, longer training on larger datasets to fit all model 
parameters. 

Visual examples of these activation functions can be seen in Fig. 13. 
While each behaves differently, particularly across the negative domain 
(x < 0), the simplicity and robustness of the ReLU have made it the most 
commonly used activation function for hidden layers in regression 
neural networks. 

In the case of a multinomial classification problem, a more simple 
network may be possible by using one-hot encoding. A one-hot encoding 
vector is defined for N exclusive options: one element in the N-element 
vector is 1, all other values are 0. Rather than using multiple layers to 
construct the binomial ladder required to simulate a multinomial deci-
sion, the softmax activation function selects one-from-many in a single 
layer. Since each value in the input vector appears in the softmax 
exponent, even small differences in the magnitude of z result in large 
differences in the output of this activation function; therefore one op-
tion, represented by one node or neuron in the layer, is approximately 1 
and all others are nearly 0. Simplification of the network architecture by 
choosing activation functions that more closely resemble the nature of 
the problem emphasizes the importance of domain-specific knowledge 
in developing appropriate NN architectures. 

Combining the concepts of neural networks and image processing 
filters, convolutional neural networks (CNNs) not only learn how to 
correlate features to results, they are designed to also identify the filters 
that extract those features. These networks require large numbers of 
parameters, in the tens to hundreds of millions, that introduces an 

Fig. 14. The image segmentation approach implemented by Miyazaki et al. to automatically segment, classify, and characterize SEM images of Ti-6Al-4V micro-
structures. (a) First, the SEM images are obtained. (b) A random forest algorithm is used to classify regions of the image and (c) build a database of classified images. 
(d) Image segmentation proceeds to separate out the α and β phases. (e) An ellipse approximation is overlaid on the segmented image to characterize grain 
morphology and size. (f) The nearest neighbor distance can be calculated from the ellipse locations to provide a measure of grain distribution. Microstructures can be 
very complex for additively manufactured alloys and performing this characterization by hand becomes burdensome. Image recognition algorithms can automate the 
process and significantly speed up characterization, development, and qualification times. 
Image reproduced from Miyazaki et al. [210]. 
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insurmountable training burden due to the sparsity of materials data. 
However, CNNs trained on natural images have demonstrated a 
remarkable similarity in their initial layers [197]. These first few layers 
identify basic shapes, edges, and colors that are common to many image 
types; a phenomenon that many groups have exploited to overcome the 
limitation of data sparsity through transfer learning [124], including 
specific work in the field of additive manufacturing. Yuan et al. [198] 
were able to successfully monitor melt track width, standard deviation, 
and continuity of tracks in situ during laser powder bed manufacturing. 
Scime and Beuth trained a convolutional neural network to identify six 
different types of defect that are typical of laser powder bed fusion, with 
reasonable prediction accuracy [199]. Li et al. used a type of neural 
network method called deep learning to classify AM parts using micro-
structural images [200]. Kwon et al. classified melt pool morphologies 
using a neural network [201]. These studies represent only a few 
possible uses of CNN for in situ process monitoring of AM. 

Scime and Beuth modified a well-known convolutional neural 
network architecture – known as AlexNet [202] – to perform classifi-
cation of powder spreading errors that occur in laser powder bed fusion 
[203]. The study presented by Scime and Beuth go in-depth on the ar-
chitecture of their CNN and directly explain how the training of filters 
applies in the context of AM images. 

3.3.2. Featurization of qualitative image data 
The same processing algorithms that are used for featurization and 

modeling of in situ signals can also be applied to automate part of the 
scientific process of studying additive manufacturing. Specifically, 
computer vision can be used to automate classification of microstruc-
tures during parametric analysis. 

Parametric analysis in additive manufacturing requires the charac-
terization and measurement of material properties that result from a 
specific coordinate in the design space. Often, material properties like 
mechanical strength, surface roughness, microstructure, or defect den-
sity have to be measured, analyzed, and quantified or classified as part of 
the parametric analysis process. This experimental process can be 
tedious. More often than not, images are relied upon heavily in classi-
fying material properties, especially microstructures. Fortunately, ma-
chine learning algorithms can be applied to automate the analysis of 
images during the parametric analysis process. 

It is worthwhile to mention up front that these algorithms have been 
tested on microstructure and, in some cases, additive-specific images. 
There are few algorithms that can process AM microstructure data “out- 
of-the-box.” Rather, these algorithms will need to be tailored in order to 
quantify AM images specifically. However, the algorithms discussed 
here have been proven on non-AM microstructure datasets, thus they 
should be extensible to AM datasets. The computer vision approaches 
that work for microstructure data are often the same approaches that 
will be discussed again later for in situ monitoring and feedback. 

One AM-related application of image characterization is measuring 
particle size distributions in AM powder feedstock. DeCost and Holm 
used SIFT with a dictionary classifier to measure the particle size dis-
tribution for a dataset of synthetic powder particles [204]. Particle size 
distribution plays in several steps across the additive process including 
energy absorption and part metrology [64,205,206]. DeCost created 
datasets with six different particle size distributions. Image features 
were identified and classified using k-means clustering on the features 
found by SIFT. Then, a classification algorithm known as a support 
vector machine (SVM) was trained to classify image features into par-
ticle sizes. DeCost was able to achieve 89% overall classification accu-
racy in measuring particle size distribution this way. DeCost later 
improved upon this powder classification method and were able to 
achieve higher classification accuracies for real powder images [207]. 
Machine learning algorithms have also been trained for the automatic 
classification/identification of EBSD texture maps [208,209] (Fig. 14). 

Strides have been made in automatically identifying and quantifying 
information from metallographs [49,124,211,212]. A good portion of 

quality control in materials science as a whole, not just AM, involves 
classifying materials based on metallographs or micrographs of micro-
structure. Work is being done across materials science to apply machine 
learning based computer vision to classifying and quantifying informa-
tion in these microstructural images. Doing so will speed up the process 
of materials characterization and qualification, while also providing 
methods of quantifying information that otherwise would have stayed in 
a qualitative form. Examples include classification of grain structures, 
measurements of grain size, pore size calculations, and more. 

An additive-specific image segmentation algorithm was used by 
Miyazaki et al. [210]. Five image filters were convolved with micro-
structure images of selective laser melted Ti-6Al-4V. The features 
identified by these filters were used in a random forest algorithm to 
segment the image into regions of α phase grains and β phase grains. The 
algorithm was able to automatically calculate area fraction of primary 
and secondary α phases that form during cooling. It was also able to 
calculate the nearest-neighbor distance between grains. Nearest 
neighbor distance of grains is indicative of grain characteristics like size, 
morphology, and distribution. 

Chowdhury et al. took a more expansive approach to performing 
feature identification in microstructures. In particular, they were look-
ing to classify microstructures as either dendritic or non-dendritic. 
Chowdhury employed 8 different feature identification methods for a 
dataset of images. Classification was performed using an ensemble of ML 
techniques including support vector machines (SVM), Naïve Bayes, 
nearest neighbor, and a committee of the three previous classification 
methods [213]. Chowdhury’s wide approach to image classification 
achieved classification accuracies above 90%. 

Efforts are underway across materials science to implement com-
puter vision for the automation of materials classification. Rather, the 
authors would like to refer the reader to the computer vision libraries 
listed in Table 4. 

4. Learning from the past: moving towards database-driven 
design of additive technologies 

The scientific approaches to studying additive manufacturing dis-
cussed herein – parametric analysis, computational modeling, in situ 
monitoring, and the like – produce data. The application of machine 
learning to these scientific approaches likewise produces data. All of this 
data comprises a subset of the AM design space. The integration of this 
data into multi parameter, multi physics, multi printer datasets increases 
both the size of the design space that can be explored as well as the 
depth/accuracy at which certain regions of the design space can be 
modeled. Making AM process-structure and process-property data open 
and accessible to the scientific public accelerates the rate at which data- 
driven approaches can help to advance AM research and engineering. 
This potential is evident in examining some more mature examples of 
the use of data-driven approaches in materials science and engineering, 
which we proceed to briefly review in this section to motivate the 
development of data-driven approaches for AM. 

Databases of process-structure and process-property relationships 
are not a new concept in materials science. Databases like the Linus 
Pauling Files or International Crystal Structure Database have been 
widely used for materials design. Domain-specific databases are also 
being generated from high throughput experimental and computational 
investigations that have occurred over the past thirty years. Experi-
mental high throughput investigations have also been used in materials 
science for many decades [214]. Common deposition techniques 
(sputter, plasma, vapor, etc.) have enough degrees of freedom to allow 
for continuous compositional variation within a single sample, which 
allows for continuous mapping of composition-structure-property re-
lationships [35–37]. These combinatorial synthesis methods present 
analogous design space challenges to AM: the number of possible input 
combinations obscures many of the important underlying process- 
structure phenomenon. It has long been established that synthesizing 
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and characterizing large combinatorial catalogues of samples can lead to 
the discovery of materials with optimized properties faster than a 
theory-driven approach by itself [215,216]. High throughput deposition 
studies with chemical vapor deposition, metallorganic chemical vapor 
deposition, physical vapor deposition, and atomic layer deposition, 
among other techniques are commonplace for the manufacturing of 
sensors, batteries, photovoltaics, electronics, shape memory alloys, and 
the like [87,217–222]. Furthermore, the parameters of interest in these 
studies can sometimes be quickly catalogued using high throughput 
characterization techniques like laboratory X-ray diffraction and elec-
tron probe microanalysis [223,224]. These combinatorial studies 
culminate in large libraries of material properties listed as a function of 
composition. As far back as the 1990s, data-driven algorithms were 
being applied to search and discover using these large libraries of 
composition-property data. Evolutionary and genetic algorithms were 
trained on composition to predict stable crystal structure and material 
properties [85,89,92,225,226]. Even neural networks, which did not 
have the widespread use then that they have now, were being applied for 
the prediction of crystal structures based on composition [227]. 

Modeling challenges in materials science have also been tackled 
using large databases with machine learning. Packages such as the 
Vienna Ab initio Simulation Package (VASP) have been employed for 
high throughput searches of stable material systems with a wide range of 
properties. The stability and maturity of these packages have enabled 
the reliable automated calculation of new stoichiometries and new 
phases [228] and enabled the automated and semi-automated search for 
new functional materials [229]. As these methods have improved, 
computational high throughput investigations continue to increasingly 
match and provide complementary information to experimental mea-
surements [230]. High throughput density functional theory (DFT) 
studies generate quite a bit of data and are therefore well equipped for 
machine learning and database-driven design. The application of high 
throughput DFT is widespread for design of materials with all sorts of 
properties including high temperature superconductors [231], lithium 
ion batteries [83,232,233], molecule design [20,234], cathode materials 
[235], piezoelectrics [86], ferroelectrics [236], corrosion resistant films 
[237], and thermoelectrics [238,239]. Each of these studies, like para-
metric studies in additive, vary a set number of model input parameters 
and measure a material property as the dependent response. 

Yet many of the same modeling obstacles exist in DFT as in AM, such 
as a lack of transferability between models and the computational 
expense of large material systems. The design space problem exists here 
as well – there are so many possible compositional combinations that 
knowing where to look is difficult. Machine learning was proposed as a 
solution for obstacles in high throughput DFT as early as 2005 [240]. 
Large unit cells whose properties cannot be directly calculated using 
DFT are often approximated using machine learning approaches like 
neural networks [241], genetic algorithms [93], and principal compo-
nent analysis [162]. Studies applying machine learning to databases of 
computational information have gone beyond tackling computational 
problems. In some cases, the studies have revealed previously unob-
served or uncharacterized relationships between crystal structure in-
formation and materials properties [242]. 

In other efforts to reduce the time to design and deploy new mate-
rials, programs like the Materials Project incorporate data taken from a 
wide range of experimental and computational methods into an open- 
source, accessible database. The Materials Project also features elec-
tronic, structural, and thermodynamic calculations of different materials 
as well as an automated workflow for doing DFT computations of ma-
terial systems [75,243]. Other databases of materials information 
include AFLOWLib [74,244], the Harvard Clean Energy Project [245], 
Japan’s National Institute of Material Science [246], and the Open 
Quantum Materials Database [247]. Some pipelines for high-throughput 
computation and analysis have included consideration of publication 
timelines in their processes [248]. These databases offer a multitude of 
benefits to materials researchers. First and foremost, publicly accessible 

databases offer an infrastructure for the free flow of experimental and 
computational results. Synergy between research groups becomes easier 
as data is shared more freely. Furthermore, many of these online data-
bases also provide tools for performing material design. The Materials 
Project offers a design interface, whereby users can specify a set of 
material properties and are provided with a list of likely candidate 
materials. Other projects, like AFLOW, allow for fast high-throughput 
DFT calculations of a wide range of material systems. 

The generation of databases that are accessible to the scientific 
public is a primary step on the roadmap of the Materials Genome 
Initiative [249]. Much of the development of materials databases have 
focused on computationally-derived materials information. Infrastruc-
ture and standards need to be developed that allow for sharing of 
experimental data that is understandable and usable by many re-
searchers. Data journals are becoming more common for sharing data-
sets from scientific investigations and are making strides in 
standardizing data-sharing infrastructure [250], along with the publi-
cation of datasets themselves for public use [251,252]. By examining the 
development of image processing databases outside of materials science, 
it is evident that the collection and distribution of image databases have 
enabled rapid developments in the field of computer vision. Many of the 
more common objectives with computer vision – autonomous naviga-
tion, face recognition, object recognition, image segementation – have 
databases that are catalogued in online repositories like CVonline [253] 
and VisionScience [254]. Learning from these other fields, open sharing 
of AM microstructure image databases will aid in the development of 
segmentation and identification algorithms that are suited for materials, 
and more specifically AM-specific problems. 

Having open, accessible databases improves the rate at which ma-
chine learning can be applied to design for additive manfuacturing. 
Machine learning as a tool driving materials design was proposed some 
time ago. Review articles have explored the many and varied uses of 
machine learning across materials science, with many of the applica-
tions finding great success [19,255,256]. A review article on best 
practices for machine learning in materials science can be found in the 
work of Wagner et al. [18]. Open sharing of databases also tackles a 
problem in ICME approaches to AM; that is, the integration of multiple 
data sources. AM incorporates relevant physics over many different time 
and length scales, to the extent that a single research group is unlikely to 
have access to all pertinent information. Open sharing of data sets, 
whether it is computationally derived, experimental, or images, allows 
research groups to incorporate multiple physics simultaneously. 
Furthermore, it will accelerate the rate at which AM materials research 
is performed as higher fidelity machine learning models can be built 
with more and diverse datasets. 

Additive manufacturing should move toward the same types of 
infrastructure for open data sharing. The combinatorial problems in 
additive are widespread and cover many, many length scales. Large 
institutions may have the resources to link time- and length-scales in 
additive manufacturing. Smaller research groups are often limited to 
studying a single process phenomenon and do not necessarily have 
means to integrate their knowledge into other additive manufacturing 
studies. The generation of additive databases allows for a democrati-
zation of research and an acceleration of the pace at which additive 
manufacturing advances are made. 

5. Conclusions 

Materials informatics has demonstrated great success as a tool that 
can accelerate and reduce cost for discovery, design and optimization of 
many material systems. Metals additive manufacturing is primed to 
benefit from the same algorithms and statistical models. Many of the 
major obstacles that lie ahead in additive manufacturing – fully inte-
grated ICME modeling approaches, data-driven design, feedback and 
control using in situ process monitoring sensors – can be attained by 
incorporating machine learning. However, machine learning itself is not 
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the end-all-be-all solution to developing AM technologies. There are 
many obstacles in the application of machine learning itself that will 
need to be addressed along the way. ML is a complementary tool to 
physics-based modeling and experiments. Just like transmission electron 
microscopy does not solve every problem by itself, neither will machine 
learning. Instead, it should be understood where and when ML is a 
desirable technique, and which class/type of ML algorithms is right for 
the problem. Since the goal of this review article is to introduce AM 
scientists and engineers to the concepts of ML and the selection and 
evaluation of ML algorithms for solving problems in AM, in conclusion, 
it is worthwhile to summarize the major AM challenges that can be 
solved using machine learning, as well as identify the major obstacles to 
implementation. 

5.1. Key application areas for machine learning in additive 
manufacturing  

• Coupled Physics-Statistics Models: The original goal of materials 
informatics, dating back to high throughput thin-film studies in the 
1990 s, was to model material process-structure-property relation-
ships that were highly complicated and lacked a single governing 
physical theory [214]. Additive manufacturing is the embodiment of 
a complicated physical system, where governing equations across 
optics, fluid mechanics, solid mechanics, thermodynamics, and ki-
netics have to be incorporated into one model. Machine learning can 
build computationally accessible surrogate models of more compli-
cated physical systems that are useful for engineering and design.  

• Materials Design: Materials design through machine learning has 
already been applied in a wide range of fields cited here, including 
thermoelectrics, photovoltaics, semiconductors, Heusler com-
pounds, and many, many more. Design in these fields typically fo-
cuses around combinatorial studies of compositions, crystal 
structures, and a material response. Materials are manufactured 
through a wide variety of techniques but optimization is rarely 
applied to the manufacturing method itself, just the materials used in 
manufacturing. In additive, not only does the material system need 
to be tailored but the conditions of manufacturing also need opti-
mization. Materials properties to consider range from composition 
and atomic properties to phase kinetics. Manufacturing optimization 
includes the energy density used, deposition rate, feedstock supply 
mechanism, and more. Machine learning can integrate optimization 
across these separate design considerations. Process optimization is 
likely to include in situ control.  

• Automated Process Control: There are many variables to monitor and 
keep track of in the additive processes. There are equally many 
sensors and measurement techniques to monitor the process. Ad-
vancements in signal processing and computer vision must be taken 
advantage of to build incorporating process control models. Intelli-
gent feedback and control for additive can simultaneously integrate 
and understand multiple signal types and optimize on multiple 
objective functions simultaneously. Taking full advantage of the 
promises of AM – topologically optimized geometries, functionally 
graded materials, minimized design-to-fly time – will require tight 
control over the manufacturing process. 

5.2. Further developments are needed in both additive manufacturing and 
machine learning  

• Data Sharing Infrastructure: Programs like the Materials Project, 
AFLOW, and OQMD have accelerated the rate at which materials 
design can occur, as well as the rate at which scientific data is shared. 
The democratization of data has allowed many different research 
teams to search through the materials design space in search of new 
materials, to great success. The same type of democratization is 
possible in additive if infrastructure exists for sharing of AM data. 

However, standardization of AM data types should be addressed 
before data can be shared in a useful, meaningful way.  

• Curation of Data and AM Standards: Success in applying data-driven 
approaches is tied tightly to the quality of data being used. Even data 
that has been collected with the highest care and precision can be 
detrimental to a model if it is labeled incorrectly or inconsistently. 
Work is proceeding in standards development for additive 
manufacturing [257]. However, additive manufacturing technology 
development has sometimes proceeded faster than standardization. 
Care needs to be taken in developing AM standards that are consis-
tent across manufacturing devices and can also account for de-
velopments in the broader technology.  

• Experimental Measurement and Sensor Development: While in situ 
measurement devices are widespread, the time and length scales of 
additive manufacturing can push the limits of current high-end 
sensors. Imaging methods that can resolve the fast, dynamic, 
microscale melt pools of additive would allow for a huge leap in 
process monitoring and control. Equally important is developing 
methods of determining temperature history throughout the dura-
tion of builds. Both of these technologies are crucial for fine control 
over the additive process.  

• Physics-Informed-Data-Driven Models: Additive manufacturing has 
developed amazingly over the past few decades thanks to traditional 
scientific and engineering approaches in many different fields. 
Modeling AM using classical thermal, mechanical and kinetic models 
has shown success in advancing and engineering the technology. 
This review is suggesting that machine learning be used as a com-
plementary tool to these traditional approaches. It would be unwise 
to completely ignore physical theories that have shown applicability 
in AM. Rather, machine learning algorithms should be built around 
currently existing models. There are equally rich mathematical 
frameworks in both materials science and machine learning that are 
currently being utilized separately. The physics of AM at all length 
scales – solidification, phase kinetics, heat transfer, solid mechanics, 
etc. – should be used as first principles for building physics-informed 
statistical models. Many in the materials science community have 
considered how to use domain knowledge to build better informatics 
models [18,89,225,258]. The same should be applied to additive 
manufacturing. 

Additive manufacturing stands to significantly expand humanity’s 
ability to manufacture high performance, multifunctional, and highly 
customized engineering parts. At present, non trivial challenges in un-
derstanding the PSPP relationships stand in the way of achieving the full 
potential of AM. The development, integration, and application of sta-
tistical analysis, machine learning, and data-driven approaches into the 
additive manufacturing R&D ecosystem will tackle many of the prob-
lems currently facing the technology’s advancement. Additive 
manufacturing is positioned to provide foundational case studies for the 
adoption of machine learning into physics-based integrated computa-
tional materials engineering, largely due to the simultaneous peak in 
funding for both additive manufacturing and data-driven materials 
research across the globe. The success of machine learning applications 
in metals additive manufacturing are poised to provide the foundation 
for a new paradigm in integrated computational materials engineering 
as a whole. 
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