
Incorporating X-ray Microscopy into Self-Driving Laboratories
Gordon Research Conference 2026: AI for Materials, Energy, and Chemical Sciences

Nathan S. Johnson
Carl Zeiss Research Microscopy Solutions

1 Introduction

Self-driving laboratories have emerged as a powerful paradigm for accelerating scientific discovery
by tightly coupling experiment execution, data analysis, and decision-making in automated closed-
loop workflows. While substantial progress has been made in automating synthesis, simulation, and
data-driven optimization, advanced microscopy remains a persistent bottleneck. In particular, X-
ray microscopy requires expert knowledge to safely configure instrument geometry, select acquisition
parameters, center samples, and interpret imaging results. These tasks are traditionally performed
manually and are difficult to encode using fixed-rule automation alone.

This document presents a deeply technical description of a multi-agent large-language-model
(LLM) control system developed to autonomously operate a ZEISS Versa 630 X-ray microscope.
The system is designed as a modular microscopy control layer that can be integrated into broader
self-driving laboratory frameworks. Unlike monolithic LLM control approaches, the system em-
phasizes explicit orchestration, deterministic hardware interfaces, structured state, and layered
memory, enabling safe, repeatable, and extensible autonomous microscopy.

2 Software Architecture Overview

The system is implemented in Python and organized around four tightly integrated subsystems:
(1) a LangGraph-based multi-agent controller, (2) MCP-exposed deterministic hardware and ge-
ometry services, (3) a layered retrieval-augmented generation (RAG) memory system, and (4) a
metrics, logging, and profiling framework. The architecture separates reasoning, execution, and
state management, which is essential for safe autonomy on physical laboratory equipment.

At runtime, an interactive driver initializes an isolated workspace, constructs an initial AgentState,
and executes a compiled LangGraph application until the workflow terminates. All intermediate
artifacts, metadata sidecars, and logs are written to a structured directory hierarchy, enabling
reproducibility and post hoc inspection.

Major Python packages include langgraph (state-machine orchestration), langchain (model
abstraction and message types), fastmcp (MCP servers and typed tool schemas), chromadb/langchain chroma

(vector stores), and scientific Python libraries (NumPy, OpenCV/scikit-image where applicable)
for image processing. Instrument control relies on the ZEISS XradiaPy API, wrapped behind MCP
tools to ensure deterministic, auditable behavior.

3 Agent State Model

All nodes in the graph operate over a shared mutable AgentState dictionary. This state is the
authoritative working memory of the system and is designed to minimize dependence on long

1



conversational history. Table 1 summarizes the major fields.

State key Type Description / semantics

messages list[Message] Bounded transcript (Human/AI/Tool messages). Older
messages may be pruned/summarized to enforce token and
count budgets.

world model dict Authoritative structured working memory (e.g., sample,
instrument, safety, session). Injected into every agent
prompt.

tasks list[dict] Task list. Each task typically includes task id,
description, assigned to, status, and optional result.

assigned tasks for agentlist[str] Current batch of task IDs assigned to an agent. Used to
reduce LLM overhead via batched execution.

last tool span dict Captured tool span (AI tool-call message + ToolMessages)
for post-processing by world update.

task trace dict Per-task structured trace (tool calls, results, timestamps,
verifier decisions). Enables auditability and debugging.

artifacts index dict Registry of generated files (images, sidecars, recon
outputs) with metadata linking artifacts to tasks and
sample/session context.

lessons list[dict] Short-term experiential memory distilled by world-update
(e.g., “what worked” / “what failed”). Capped and
injected into prompts.

memory context str Retry hints / additional context injected on failure (e.g.,
last error summary, suggested correction).

last error str Most recent detected error string (tool failure or
exception). Used by verifier and supervisor.

retry count int Global or per-workflow retry counter; incremented by
verifier on failure.

max retries int Maximum retries before escalation/abort (also
configurable globally).

next str Routing directive used by LangGraph conditional edges
(e.g., instrument, image, world update, supervisor,
FINISH).

decision log list[dict] Timestamped log of supervisor routing and rationale for
traceability.

Table 1: Representative AgentState schema used by the LangGraph controller. Exact key set may
include additional workflow-specific fields (e.g., workspace paths, metrics handles).

4 LangGraph Topology and Agent Roles

The LangGraph application consists of five nodes: Supervisor, Instrument Agent, Image
Agent, World Update, and Verifier. The supervisor performs task planning and batch assign-
ment. The instrument agent executes microscope control actions via MCP (motion, objective/filter
selection, acquisition). The image agent executes analysis tasks (segmentation, centroid extraction,
transmission computation) and geometry reasoning via deterministic geometry tools.

After agent tool execution, the world-update node reduces the raw tool span into a structured
patch, merging updates into world model, indexing any produced artifacts, and appending task
trace entries. The verifier then evaluates whether the current task is complete, failed, or requires

2



Figure 1: High-level control flow of the LangGraph application. The supervisor plans and assigns
task batches. Instrument and image agents execute MCP tool calls, producing a tool span. A
world-update node reduces tool outputs into a structured patch (world model, artifacts, trace,
lessons). A verifier node evaluates completion, handles retries, and routes control to the next node
via state[’next’].

retry, and sets state[’next’] accordingly.
A critical performance optimization is batch execution: the supervisor assigns a list of task

IDs to an agent, and the agent is instructed to execute all tasks in sequence. Batch continuation
is implemented by verifier routing back to the same agent (agent → world update → verifier →
agent) until the batch is exhausted, rather than forcing a supervisor intervention after each tool
call.

Figure 1 summarizes the primary LangGraph control flow. The key design pattern is that
execution proceeds agent → world update → verifier, with the verifier routing back to the same
agent for batch continuation, retry, or escalation to the supervisor for replanning.

5 Formal Pseudocode for the Agent Loop

Algorithm 1 formalizes the control loop implemented by the LangGraph state machine. The pseu-
docode focuses on the design pattern in which (i) the supervisor emits tasks and assignments, (ii)
agents execute tools via MCP, (iii) tool outputs are reduced into structured state patches, and (iv)
a verifier gate controls retries and routing.

6 Deterministic Tool Execution via MCP

A central safety and robustness feature is that the LLM agents never directly manipulate the micro-
scope workstation or call vendor APIs in-process. Instead, all actuation and analysis capabilities
are exposed as a curated, typed “tool surface” via the Model Context Protocol (MCP). In this
system, the LangGraph controller is an MCP client : it issues JSON-RPC tool calls and receives
structured responses. Each MCP server is a small, single-responsibility Python service implemented
with fastmcp.

3



This separation yields two practical guarantees. First, hardware interactions are deterministic
and auditable: tool outputs are machine-readable dictionaries rather than free-form text, and each
call can be logged with its arguments and results. Second, safety policies can be enforced at the
interface boundary: tools validate inputs, can clamp to calibrated limits, and can refuse unsafe
requests without relying on the LLM to infer hidden constraints. In practice, this means that
failures are dominated by planning quality (task decomposition and sequencing) rather than by
unpredictable actuation behavior.

6.1 MCP mechanics and run context

The tool runner in the LangGraph application (e.g., a ToolNode) injects a per-run working directory

into tool calls so that each server reads and writes only within the current run workspace. Servers
follow a sidecar-first philosophy: whenever a tool produces an artifact (TIFF image, recipe file, his-
togram figure, geometry report), it also writes a compact JSON sidecar capturing parameters and
state required for reproducibility and downstream tools (e.g., pixel size, image shape, stage pose,
source/detector positions, objective/filter selection, voltage/power, binning, and exposure time).

6.2 Versa MCP server (versa server.py)

The Versa server is the primary hardware interface. It wraps the ZEISS vendor API (XradiaPy.Core.XRM)
behind deterministic tools for instrument snapshotting, X-ray source control, axis motion, and im-
age acquisition. Internally it uses standard libraries (threading, time, uuid, os/sys) plus anyio
and fastmcp. Every acquisition writes both an image file and a JSON metadata sidecar (via a
dedicated helper), which becomes the authoritative record consumed by the geometry and analysis
servers.

Operationally, the Versa server is intentionally conservative: it provides small, composable
primitives (“query current positions”, “move axis”, “acquire image”) rather than a monolithic “run
the workflow” command. This keeps higher-level sequencing in the LangGraph controller, where
retries, verification steps, and cross-agent coordination can be expressed explicitly and logged as
part of the agent state.

6.3 Geometry MCP server (geometry server.py)

The Geometry server provides deterministic, calibration-aware computations that should not be re-
derived by the LLM at runtime. It is implemented using sqlite3 (for calibration/limits lookup),
dataclasses (for typed limit records), and basic numerics (math). The server loads global limits
and detector-specific constraints from a bundled SQLite database (instrument limits/opt/limits.sqlite)
and can emit JSON reports that record both the selected configuration and the limits used.

The server implements two main classes of functionality. First, it exposes sidecar-based cen-
tering transforms (recenter xy from sidecar and recenter yz from sidecar) that convert an
image-space centroid (row/column in pixels) into a stage-space correction in microns. These tools
read pixel size, image shape, stage pose, and θ from the acquisition sidecar, validate that θ is
consistent with the intended view (e.g., XY expects θ ≈ 0◦), and then apply fixed sign conventions
to map image rows/columns into stage axes. The output includes both the delta movement and
the proposed new stage position.

Second, the server exposes geometry-selection utilities that choose source-to-object and object-
to-detector distances to meet imaging requirements while respecting calibrated mechanical and
detector limits. Given a sample bounding box and a desired pixel size (or field of view), these
tools search allowable detector modes and binning options and return a feasible configuration

4



(including recommended source/detector Z positions), or a “no-solution” report that explains which
constraints cannot be satisfied.

6.4 Image analysis MCP server (image analysis server.py)

The ImageAnalysis server exposes deterministic image processing primitives used in centering,
transmission correction, and workflow verification. It is built on numpy, Pillow (TIFF I/O),
scikit-image (thresholding and region measurements), and matplotlib (figure generation). A
dedicated TIFF loader handles common microscopy edge cases (multi-page TIFFs, RGB(A) encod-
ings, and volumetric stacks) and returns both the image array and basic metadata.

At the tool level, the server provides Otsu-threshold segmentation and connected-component
measurements (area, centroid, bounding box) via skimage.filters and skimage.measure. It
also provides histogram plotting and annotation utilities (e.g., overlaying a centroid marker and
bounding box) to create human-auditable artifacts. These tools are intentionally low-level and
deterministic: the agent decides when to segment and how to use the resulting measurements, but
the pixel-level operations themselves are reproducible and parameterized.

6.5 Recipe MCP server (recipe server.py)

The Versa-Recipe server wraps the ZEISS recipe API (XradiaPy.Recipe.Recipe) to enable pro-
grammatic generation and execution of acquisition recipes. Tools in this server modify key recipe pa-
rameters (motion, optics, and acquisition settings), write the updated recipe to the run workspace,
and emit JSON snapshots of recipe state for traceability (e.g., objective, filter, start/end angle,
number of points, and selected acquisition parameters). This supports tomography and other
multi-projection acquisitions where configuration is naturally represented as a recipe file rather
than a sequence of individual “single-image” commands.

6.6 File handling MCP server (file handling server.py)

The FileReading server provides guarded file I/O utilities required for autonomous workflows:
listing directory contents, reading JSON and text files, validating existence, and optionally searching
within subdirectories. The server resolves all non-absolute paths relative to working directory,
expands user-home shortcuts, and returns structured error messages rather than raw tracebacks.
Centralizing these operations reduces the chance of path bugs in LLM-generated calls and enables
consistent error handling across agents.

6.7 Python execution MCP server (python execution server.py)

Finally, the python executor server is an “escape hatch” for analysis tasks outside the curated
tool surface. It accepts a Python source string, optionally writes it to the run artifacts/ directory
for reproducibility, and executes it in a subprocess while capturing stdout/stderr and wall-clock
execution time. The layered memory and supervisor policies explicitly prefer dedicated tools (seg-
mentation, geometry, file I/O) over free-form code for safety and repeatability; free-form execution
is reserved for well-scoped computations and figure generation that would otherwise require ex-
panding the MCP surface area.

5



7 Layered Retrieval-Augmented Memory

The memory subsystem is layered in practice: (i) a structured world model (authoritative working
memory), (ii) bounded “lessons” distilled from recent tool spans, and (iii) RAG over episodic and
contextual vector stores. Episodic memory is agent-specific and optimized for procedural recall;
contextual memory is shared and gated for analysis-heavy queries. Retrieval hyperparameters
(top-k, keyword gates, embedding model selection) are explicit and logged, allowing reproducible
tuning.

8 Hyperparameters and Operational Knobs

Key operational hyperparameters include the model/provider choice, LangGraph recursion limits,
batching policy, maximum retries, transcript retention limits, pruning thresholds (message count
and token budget), post-pruning target token limits, and RAG parameters (episodic and contextual
top-k, contextual keyword gates). Capability gating flags control which tool domains are exposed
to each agent, providing an additional safety boundary.

9 Demonstration Workflows

Demonstrated workflows include instrument setup, single- and two-view centering, transmission
correction, and tomography preparation. In centering workflows, images are acquired, segmented,
and converted into stage-space corrections using geometry services based on acquisition sidecar
metadata. Two-view centering uses orthogonal projections to ensure alignment in three-dimensional
stage coordinates. Tomography workflows extend this loop to magnification selection and projection
acquisition, producing datasets suitable for reconstruction and downstream analysis.

10 Performance and Benchmarking

Benchmark studies across multiple model configurations isolate the effect of planning quality on
cost, reliability, runtime, and token consumption while holding architecture constant. Results
indicate that planning fidelity dominates system-level efficiency; weaker models inflate tokens and
runtime due to retries and replanning, while stronger models converge more quickly despite higher
per-call costs. MCP-constrained execution ensures that failures remain safe and recoverable.

11 Threats to Validity

Benchmarks were conducted on a single representative workflow and may not capture behavior
under substantially longer horizons or adversarial inputs. Performance depends on orchestration
and prompt design choices, and cost and latency are subject to external API variability. Neverthe-
less, the qualitative trends observed—particularly the dominance of planning quality over actuation
fidelity—are expected to generalize across similar autonomous microscopy deployments.

6



Algorithm 1 LangGraph-based multi-agent control loop (simplified)

1: Input: user request u, configuration C
2: Initialize workspace W; initialize state S ← CreateInitialState(W, u, C)
3: S[next]← supervisor

4: while S[next] ̸= FINISH do
5: if S[next] = supervisor then
6: S ← PruneIfNeeded(S, C)
7: ctx← InjectMemory(S, supervisor, C) ▷ RAG + lessons + world model
8: plan← LLM Plan(u, S, ctx) ▷ JSON: tasks + assignments + routing
9: S ← ApplyPlan(S, plan)

10: S[next]← plan.next
11: else if S[next] ∈ {instrument, image} then
12: agent← S[next]
13: S ← PruneIfNeeded(S, C)
14: ctx← InjectMemory(S, agent, C)
15: taskBatch← S[assigned tasks for agent]
16: toolCalls← LLM Act(agent, taskBatch, S, ctx)
17: toolMsgs← ExecuteToolsViaMCP(toolCalls,W)
18: S[last tool span]← CaptureSpan(toolCalls, toolMsgs)
19: S[next]← world update

20: else if S[next] = world update then
21: patch← LLM ReduceToolSpan(S[last tool span], S)
22: S ← DeepMerge(S, patch.world model patch)
23: S ← IndexArtifacts(S, patch.artifacts)
24: S ← UpdateTaskTrace(S, patch.task trace patch)
25: S ← AppendLesson(S, patch.lesson)
26: S[next]← verifier

27: else if S[next] = verifier then
28: decision← LLM Verify(S) ▷ JSON: done/fail/retry + routing
29: S ← ApplyVerifierDecision(S, decision)
30: if decision.status = failed then
31: S[retry count]← S[retry count] + 1
32: if S[retry count] > S[max retries] then
33: S[next]← supervisor ▷ escalate / replan / abort
34: else
35: S[memory context]← decision.retry hint

36: S[next]← decision.retry route ▷ instrument or image
37: end if
38: else
39: S[next]← decision.next ▷ batch continue or supervisor
40: end if
41: end if
42: end while
43: Finalize workspace W; export metrics, artifacts, and logs
44: Return: final state S

7


	Introduction
	Software Architecture Overview
	Agent State Model
	LangGraph Topology and Agent Roles
	Formal Pseudocode for the Agent Loop
	Deterministic Tool Execution via MCP
	MCP mechanics and run context
	Versa MCP server (versa_server.py)
	Geometry MCP server (geometry_server.py)
	Image analysis MCP server (image_analysis_server.py)
	Recipe MCP server (recipe_server.py)
	File handling MCP server (file_handling_server.py)
	Python execution MCP server (python_execution_server.py)

	Layered Retrieval-Augmented Memory
	Hyperparameters and Operational Knobs
	Demonstration Workflows
	Performance and Benchmarking
	Threats to Validity

