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Abstract: The next generation of advanced materials is tending toward increasingly complex compo-
sitions. Synthesizing precise composition is time-consuming and becomes exponentially demanding
with increasing compositional complexity. An experienced human operator does significantly better
than a novice but still struggles to consistently achieve precision when synthesis parameters are
coupled. The time to optimize synthesis becomes a barrier to exploring scientifically and technologi-
cally exciting compositionally complex materials. This investigation demonstrates an active learning
(AL) approach for optimizing physical vapor deposition synthesis of thin-film alloys with up to five
principal elements. We compared AL-based on Gaussian process (GP) and random forest (RF) models.
The best performing models were able to discover synthesis parameters for a target quinary alloy
in 14 iterations. We also demonstrate the capability of these models to be used in transfer learning
tasks. RF and GP models trained on lower dimensional systems (i.e., ternary, quarternary) show an
immediate improvement in prediction accuracy compared to models trained only on quinary samples.
Furthermore, samples that only share a few elements in common with the target composition can
be used for model pre-training. We believe that such AL approaches can be widely adapted to
significantly accelerate the exploration of compositionally complex materials.

Keywords: vapor deposition; active learning; machine learning

1. Introduction

Traditional alloy engineering mixes small additions of alloying elements into a primary
element matrix for performance improvement. However, after centuries of incremental
improvements, we are rapidly reaching the limit of performance from primary alloys.
Over the last decade, compositionally complex alloys, sometimes called multi-principal
element alloys or high-entropy alloys [1–4], containing many (3+) elements in significant
proportions, have shown outstanding properties for a wide range of engineering appli-
cations, including structural alloys [5,6], batteries [7], thermoelectrics [8], shape-memory
alloys [9,10], catalysts [1], high-entropy alloys [2–4,11], high-entropy ceramics [12], and
more. Many of the desired alloys are composed of refractory and low-melting elements, and
the final composition is seldom the same as the composition of the input reactant; it takes
several iterations before the desired composition is reached. Discovering and fabricating
precise alloy compositions in these high-dimensional spaces using a traditional approach is
substantially slower and more expensive than desired.

The deposition of one element, and, consequently, reaching the desired alloy com-
position, is often influenced by the deposition of the other elements; therefore, a higher
compositional complexity often means a significantly more complex synthesis optimiza-
tion in coupled high-dimensional parameter space. The problem is further exacerbated
because these new functional alloys are needed as thin films for catalysts and coatings or
desired to be fabricated by advanced synthesis methods such as additive manufacturing
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or electroplating. High-throughput synthesis and characterization, guided by physical
models, machine learning, or intuition (and human expertise), are suggested as a path for
accelerated search of complex systems [13].

Currently, synthesis conditions are arrived at by a human operator relying on expertise
(or intuition) in assessing the coupling between different elemental dimensions through
trial iterations. An expert operator usually finds synthesis parameters for binary or ternary
systems to a few percent of the desired compositions in a few (<5) trial iterations. However,
a human operator’s biggest challenge is learning the complex coupling as the dimension-
ality increases. They struggle to improve the precision beyond a few percent and require
exhaustive calibrations and iterative parameter tuning, especially if the coupling between
elements is complex (non-linear). A common strategy employed to combat the curse of
dimensionality is to reduce the problem’s dimensionality and then add additional dimen-
sions one at a time. For example, instead of synthesizing a 5-element sample immediately,
researchers might first manufacture 3- and 4-element sub-alloys. This multi-step approach
allows researchers to tune the composition by just a few elements at a time instead of trying
to tune five elements simultaneously. This approach converges if the additional dimensions
are weakly coupled, and the challenge often is to find a strongly coupled base subset of the
target space and separate it from the weakly coupled one if it exists.

Another common approach is physics- or chemistry-based models to map the complex
coupling between deposition parameters. Bunn et al. demonstrated a computationally
fast continuum model for optimizing film thickness in thin film samples synthesized
via magnetron sputtering [14]. Their method also requires very few initial data points
before achieving high prediction accuracy. Furthermore, their approach demonstrates high
interpretability, directly reporting parameters like gun power and angle. However, Bunn’s
model was shown for thickness measurements only, has yet to be applied to composition
optimization, and does not incorporate multiple elements. The physiochemical modeling
approach is compelling, and in many ways it quantifies information that a human acquires
to build intuition. However, physiochemical models work when there is a substantial
theoretical understanding of the synthesis process. Often, however, deep theoretical
understanding is not available; what is available is empirical observations from trial
synthesis. For example, Xia et al. detail latent causes that alter sputtering rates in magneto
sputtering of multi-element thin films and qualitative insights on how the composition
changes when multiple sources are used simultaneously [15]. However, quantitative
prediction from theory of different sputtering rates needed in multi-elemental synthesis to
reach the desired chemistry is very challenging.

Efforts to incorporate the empirical information from human operators to formulate
quantitatively accurate models for higher dimensional target spaces are important. There
are several traditional empirical methods for process optimization. One such method for
magnetron sputtering is well-detailed in an article by Alami et al. [16], which involves
depositing at power/sputtering rate steps and measuring the composition at each step.
This exhaustive empirical method works well for low-dimensional systems like binary
alloys. However, as the number of elements grew or a finer composition control was
needed, the number of empirical measurements became burdensome. Another category
of process optimization of sputtered thin films measures individual elements’ sputtering
rates at various powers and angles. A sensor, like a quartz crystal monitor (QCM), can
measure the sputtering rate directly as a function of cathode power and gun angle [17].
The sputtering rate of each element can be set to achieve the desired atomic percent of
that element in the final film. Measuring individual sputtering rates on a QCM requires
fewer measurements than exhaustively going through all power and angle combinations
for an n-element system. However, accurate QCM measurements require knowledge of the
sputtering elements’ Z-number and the deposited film’s density. The sputtering rates of
an n-ary system are tricky to measure using a quartz crystal monitor because the density
of the alloyed system is (a) usually not known a priori and (b) changes as a function of
the sputtering rate of each element. Furthermore, the number of sputtering rates and
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interaction terms grows as
(
n2 + n

)
/2 for n many elements. QCM measurements also do

not capture the interactions occurring when multiple sputtering sources are turned on
simultaneously. The traditional empirical methods are data-hungry and, therefore, not very
useful when exploring a new compositional chemistry.

Machine learning (ML) approaches, such as active learning (AL) and transfer learn-
ing (TL), provide tools that allow empirical methods to start from the earliest stages of
exploration when information and insights about a newly discovered target space are
minimal [18–22]. These approaches overcome many challenges a human operator faces,
including optimizing in high-dimensional target spaces and the ability to quickly transfer
knowledge gained from one system to another. As the exploration progresses, it also
provides real-time insights into the structure of the target space, including the strength
of coupling between dimensions and identification of a lower dimensional strongly cou-
pled target subspace, insights that the operator can exploit to fine-tune the exploration
strategy further.

In this article, we illustrate these approaches for exploring and optimizing magnetron-
sputtered synthesis of 5-element alloys containing refractory and volatile elements. The
insights that have emerged from these studies and the approaches developed here are
widely applicable to other alloy systems as well as synthesis methods. We will discuss
the insights as they emerge and highlight how they can be broadly applied to transform
research in compositionally complex alloys in the concluding section of this work.

2. Materials and Methods
2.1. Sample Preparation and Synthesis

The samples synthesized in this study are all predicted to be half-Heusler (F4̄3m)
thermoelectrics. Half-Heuslers form at specific stoichiometries [8], specifically when the
unit cell has a total of 18 valence electrons across all constituents. A three-element half-
Heusler usually has equiatomic proportions. In a four-element half-Heusler, two elements
occupy the first two Wyckoff sites and make up one-third of the atoms each. The other
two atoms split occupancy on the third Wyckoff site and make up one-sixth of atoms
each [23]. All training and target alloys in this study are listed in Figure 1.

The target compositions for the ternary system are equiatomic ratios, or A0.33̄B0.33̄C0.33̄.
For a quarternary alloy, the target compositions are A0.16̄B0.16̄C0.33̄D0.33̄. For quinary com-
positions, the target is A0.11̄B0.11̄C0.11̄D0.33̄E0.33̄.

The sputtering system used was an AJA International Orion ATC system [24] (Hingham,
MA, USA). The system uses a dual turbopump and cryogenic pump to achieve ultra-high
vacuum. The chamber pressure before all depositions was 10−8 Torr. The system has six
sputtering guns; two use a radio-frequency power source and four use a direct current
power source. Elemental targets were sourced from Kurt J. Lesker [25] and were two inches
in diameter. All non-magnetic targets had a thickness of 1/4 inch, whereas metallic targets
were 1/12 inch thick. Films were deposited on undoped single crystal Si wafers with a
<100> orientation. (University Wafer). Wafers were nominally 380 µm thick and had a
3-in. diameter. All wafers were cleaned by acetone and electrostatically shocked by a radio
frequency cathode at 100 W before deposition to clean the surface of any contaminants.

A pre-sputter routine was used for every deposition. The chamber is initially flooded
with 30 mTorr of ultra high purity argon and all cathode guns are powered on at a constant
value; this initiates sputtering on each gun. After a few seconds, the pressure is decreased
to 3 mTorr and the shutters on the sputtering guns are closed. The targets are allowed to
sputter with the shutter closed for two minutes so that the sputtering rate reaches steady
state. After two minutes, the shutters are open and all active guns sputter for one hour.
Film thicknesses vary depending on the sputtering rates of the individual elements and the
material density. In general, films have a thickness on the order of hundreds of nanometers.
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Figure 1. Overview of the active learning loop used in the present study. Pre-training of the active
learning models was done on all compositions that shared at least one element in common with the
target system. After pre-training, the model was iteratively trained and queried for new samples until
a sufficiently low MAE was achieved. The inset box lists all composition systems that are included in
the training/target datasets.

2.2. Sample Characterization

Sample composition is analyzed using a JEOL JXA-8230 (Akishima, Japan) microprobe
analyzer with wavelength dispersive spectroscopy (WDS) [26]. A thin-film correction term
is calibrated and fit to the data for each sample [27]. Corrections are also made for peak
overlap, depending on the composition system analyzed. Five WDS measurements are
taken at different regions in the films to get an aggregate composition. The final composition
reported is the average of all measurements for a single sample. Wavelength dispersive
spectroscopy has been shown to have accuracy to within ±3 atomic percent [28].

2.3. Active Learning

There are many applications where supervised learning may be helpful, but access to
labeled data is sparse and obtaining new labeled data is non-trivial. This can be the case in
some synthesis studies; manufacturing a new sample or measuring a sample’s properties
can be time- or resource-intensive. In many cases, it is both. Active learning regression
models are trained on the currently labeled dataset, even if sparse, and the trained model is
used to select the optimal input to be labeled. The ‘optimal’ input can be the one that most
improves the models predictive accuracy, lowers its uncertainty, or otherwise. Data labeling
occurs in an interactive cycle where the model chooses samples that are most beneficial
at each iteration. This contrasts strategies like uniform sampling or random sampling.
Active learning enables machine learning models to achieve better performance with fewer
labeled samples by allowing the model to choose the data it learns from. In prior research,
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active learning has shown orders of magnitude reduction in the number of labeled samples
to be generated to train a model with commensurate accuracy [29].

The primary elements of an active learning approach are a surrogate model and a query
strategy. The surrogate model is the regression model used to make predictions. Surrogate
models must provide some type of uncertainty or quality metrics so that sample optimality
can be measured. The query strategy is the method used to determine the optimal next
sample. There are different query strategies, such as uncertainty-based sampling, where the
next sample to label is the one that the model is most uncertain about. Another is querying
by committee, where an ensemble of models is trained. The variance in predictions across
the ensemble reflects the uncertainty in prediction and the optimal next sample reduces
this uncertainty by the largest margin. A third example is expected model change, which
uses model gradients to identify inputs with maximal expected gradient lengths. In this
investigation, we use uncertainty-based sampling with the Gaussian process surrogate
model and querying by committee with the random forest surrogate model.

A Gaussian Process (GP) [30] is a non-parametric model that calculates probability
densities over the space of possible regression functions, offering a probabilistic model.
Unlike a Gaussian distribution, which is characterized by a mean and covariance, a Gaus-
sian process is defined through a normal distribution over mean and covariance functions,
denoted as Y ∼ GP(m(X), k(X, X′)). In this notation, m(X) and k(X, X′) represent the
mean and covariance functions. GP models can capture various complex relationships
while providing credibility intervals for their predictions. Due to these advantages, they are
considered the default proxy model in active learning and we employ them for uncertainty-
based sampling.

In this investigation, the Gaussian process regression model was implemented using
the sklearn library [31]. Several different kernels were tested, including Matern, Rational
Quadratic, and radial basis functions, as well as combinations of these three kernels.
All kernels incorporated a homoscedastic white noise kernel. Optimal performance was
achieved with a combination of a Matern and Rational Quadratic kernel, along with a white
noise kernel. During each training step, the GPR was queried on all remaining untrained
samples. As GP regressors can be queried directly for uncertainty in predictions, the sample
with the highest prediction uncertainty was selected as the next input for the model.

A random forest [32] is an ensemble model that employs a set of trained decorrelated
classification and regression trees (CARTs), achieved through bootstrapping and feature
bagging. This decorrelation ensures that the random forest has lower variance than the
individual tree models while maintaining low bias, thus addressing the bias–variance
tradeoff. The final prediction of the Random Forest is an average over the predictions of the
trees in the ensemble. In the context of active learning, the variance between the predictions
of the trained tree models in the random forest is taken as a measure of uncertainty in a
querying by committee policy.

The random forest model used in this study was implemented using the sklearn library.
The employed model consisted of 10 random forests, each containing 250 estimators. Larger
models with up to 50 random forests and 500 estimators were tested; increasing the model
size beyond 250 estimators and 10 random forests did not significantly improve predictive
accuracy but substantially increased training time. For active learning, samples were
selected to teach the model based on committee voting. All 10 tree models were queried
for predictions on the remaining untrained samples. The sample exhibiting the highest
variance in prediction was chosen as the next teaching input for the model.

A neural network (NN) model was also used, due to the popularity and widespread
application of NN-based approaches across diverse disciplines. The neural network model
performed worse than all other models and the human operator, both in terms of prediction
accuracy and the number of samples required to achieve a given accuracy. After training
on all available samples in the training dataset, the neural network model achieved an
MAE of 9%. This is indicative of the observation that neural network models, bereft of any
additional inductive biases, need a higher number of samples to match the performance of
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classical ML approaches like random forest-based models [33–36]. The details of the neural
network models are in the provided code in the Supplementary Information.

2.4. Transfer Learning

In the active learning approach described above, new training samples are selected
from anywhere within the composition space. This implies that when training a model to
make predictions for 5-element samples, active learning models can suggest samples of
lower dimensions for testing. However, these models will only make suggestions within
the target composition space. It is essential to consider that information from overlapping
composition spaces can be utilized to train the model. For instance, a manufacturer
working with an ABC alloy may find useful correlations in a BCD alloy. Although the
two composition systems share only two elements (B and C), if the model can determine
the relationship between B and C in the ABC system, it can apply this information to make
predictions for the BCD system.

Moreover, human operators commonly adopt an approach of working towards pro-
gressively more complex systems due to the challenging nature of tuning sputtering
parameters. If an operator aims to create an ABCDE alloy, they might initially develop
an ABC alloy. After fine-tuning the parameters for the ABC alloy, they proceed to create
an ABCD alloy. Following further adjustments, they will attempt the ABCDE alloy. This
method reduces complexity by introducing only one new element for tuning at a time.
Attempting to create an ABCDE alloy without prior observations of sputtering element
interactions can be disastrous.

Many laboratories have previously manufactured and measured samples from past
experiments. It would be beneficial to leverage these samples to help initialize tuning for
a new target system, even if the old samples do not share all of the same elements. To
address this, a transfer learning approach was adopted. Initially, the active learning models
are trained solely on ternary samples that share at least one element with the target system.
Once all of the current ternary samples have been taught to the model, quarternary samples
are added. Again, these quaternary samples must share at least one element with the target
system. After the ternary samples have been integrated into the model, the conventional
active learning approach is utilized. The model is queried within the target ABCDE system
to identify the best training sample to reduce model uncertainty.

In the context of transfer learning, we employ a concept known as dummy dimensions.
This approach involves training an algorithm on all dimensions of a problem space, which,
in this case, comprises six dimensions due to the six elements within the system. However,
the input data typically contain only a few non-zero elements.

For a specific composition y, the algorithm receives a vector of length six. In the case
of a ternary sample, only three out of the six entries contain non-zero values, and for a
quarternary sample, four entries are non-zero, and so forth. The position of each element
in the vector y is preserved. For instance, the atomic percentage of Nb (niobium) is always
represented as the first entry in y. If there is no Nb in the sample, then the first entry is set
to zero. Similarly, the second entry always corresponds to titanium, and so on.

Initially, the model is trained using samples that have only three non-zero values for
power, angle, and atomic percentage. After the model is proficient with these samples,
it proceeds to train on samples with four non-zero values for power, angle, and atomic
percentage. This process continues for samples with five, and so on.

Several different transfer learning models were trained. Three models were trained
on only one compositional subsystem (ternary only, quarternary only, and quinary only).
A random sample was chosen from the manifold as the initial training point, then further
samples were selected based on maximum uncertainty.

Next, models were created that were trained on the entirety of the ternary manifold
(15 samples) and used to make predictions on the quarternary or quinary dataset. Again,
one initial sample was chosen from the target manifold (quarternary or quinary), and
further samples were selected using maximum uncertainty sampling.
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Finally, a model was trained on the entirety of both the ternary and quarternary
manifolds (30 samples), and predictions were made on the quinary dataset. A random
quinary sample was chosen as the initial training point, and then sampling proceeded
again using maximum uncertainty.

An overview of the full workflow, including transfer learning from previous samples
and maximum uncertainty sample selection, are shown in Figure 1.

All models shown in the paper were re-run 10 times with a different random sampling
of the manifold for initial training points (5 for the full model, 1 for the transfer learning
models). The MAE reported in Figures 2 and 3 are the average errors across all runs. The
error bars on the MAE represent the standard deviation in MAE across all 10 training runs.

Figure 2. Mean absolute error for a quinary composition as a function of the number of training
samples; (inset) mean absolute error for a given target composition as a function of the number of
training samples. Error bars represent the standard deviation in prediction error across 10 different
target composition predictions.

Figure 3. Performance of active learning models trained on successively more complex compositions.
Plots are organized based on the composition being predicted; the leftmost plot are predictions for
ternary compositions; quarternary in the middle; quinary on the right.

3. Results and Discussion

Active learning was implemented through two regression models: a Gaussian process
regression (GPR) and random forest (RF). These specific models were selected based on
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a set of rationale. Random forests and Gaussian process-based regression models have
been observed to be very effective at modeling with tabular data in prior research [33,35].
Additionally, these are very popular for active learning applications; for instance, Gaussian
process models are the default surrogate model in Bayesian optimization studies [30]. The
models were trained on a dataset of sputtering synthesis parameters and compositions
for ternary, quarternary, and quinary alloys. At each learning iteration, the models were
queried for the next data point to test based on a maximum uncertainty (MU) schema.
The goal was to correctly predict the synthesis parameters for a target alloy using as few
training data points as possible.

Model performance was assessed two ways: the models’ ability to correctly predict
a target composition (inset of Figure 2) and its error in predicting all compositions across
the composition manifold (main graph in Figure 2). Active learning models were able to
find a target quinary composition after only 14 sample iterations. For predicting target
compositions, the models were terminated after the mean absolute error (MAE) reached 3%
since this is the uncertainty level of the composition measurement. The best-performing
model was able to correctly predict synthesis parameters across the entire composition
manifold to within 3% error after only 26 iterations.

The error is calculated as the absolute difference in the target atomic percentage
Y and the measured atomic percentage Ŷ. This error is |Yi − Ŷi| for the ith element in
an n-ary composition. For a complete sample, the error is the mean of all differences
(1/n)∑n

i |Yi − Ŷi| for all elements, often referred to as the mean absolute error (MAE).
In this study, the training samples were ternary, quarternary, or quinary transition metal
alloys. The target compositions in Figure 2 were all quinary alloys selected from six possible
elements: titanium, vanadium, niobium, tantalum, antimony, and iron. The manifold error
is taken over all compositional complexity; the main graph in Figure 2 represents the error
in prediction for ternary, quaternary, and quinary alloys. The error shown is the average of
10 model runs, with each run sampling a different initial dataset. The shown error bars are
the first standard deviation of error across all 10 runs.

The models’ prediction ability stands in contrast to an expert human operator per-
formance; experts typically require 20 or more iterations to synthesize one target quinary
alloy correctly. However, a human expert learns synthesis parameters for one alloy and
can predict parameters for alloys with incrementally different chemistry but struggles to
predict a significantly different composition in the same quinary composition space. In
contrast, the models learn the full composition space.

The sparsity of training data was not a barrier to high predictive performance in either
RF or GPR models. Magnetron sputtering synthesis, the method used in this study, is a
labor intensive and slow process compared to others like spin coating; typically it takes
a researcher up to two days to manufacture and characterize five samples. With these
labor intensive synthesis processes, sparsity in data is a given. Researchers using active
learning methods can still benefit from model-driven parameter guidance even with small
dataset sizes.

As a baseline for data-driven models, all of the AL-based models were compared
against a least squares-based linear regression model. As shown in the Supplemental
Information, the least squares regression model had absolute errors upwards of 15 after
5 training samples; this eventually decreased to an error of around 7 after all training
samples had been fit to the model.

Models were also trained using a subset of the most important synthesis parameters,
determined using the mutual information index (MII) [37] to test the impact of poorly
informative inputs on model performance (MII is discussed in more detail below). These
models are labeled as ‘Reduced Features’ in Figure 2. The performance of models with these
reduced feature sets is within the bound of models trained on all features. This knowledge
provides several practical insights for both the active learning model and the experiments.
From a computational side, removing less-informative features in studies with large feature
sets can significantly reduce the computational cost of running an active learning workflow.
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From an experimental side, identification of less-informative features helps reduce the
complexity of synthesis studies. If a synthesis parameter is not informative of the desired
measurement, then it is better to fix that parameter and not vary it at all. Additionally, the
information regarding the relative importance of input features for the model enables the
domain scientist to compare the model’s learned mapping to their understanding of the
system [38,39]. This allows the scientist to interpret the model’s mapping and verify its
rationale, leading to a higher degree of trust in the model [40].

The neural network models performed especially poorly at this problem. As shown
in the Supplementary Figures, the best neural network model failed to achieve an MAE
below 9% even after trained on all available data. As such, the remainder of the study will
focus on the GPR and RF results.

3.1. Transfer Learning into Higher Dimensional Systems

The most powerful feature of either the RF or GPR model is the ability to learn
synthesis conditions from previously made samples even if those samples are in a lower-
dimensional composition space (ternary, quarternary) or share only a few elements in
common with the target composition. Figure 3 shows the MAE for RF models trained on
successively more complex samples. Each MAE in Figure 3 is assessed over all compositions
at a given complexity (ternary, quarternary, quinary).

Models trained only on ternary samples generally performed poorly, achieving a
final MAE of >3% for predicting ternary compositions. Models for predicting quarternary
samples trained on ternary samples show an immediate improvement in MAE over models
trained only on quarternary samples. The biggest improvement is in quinary models trained
on ternary, quarternary, or both systems. GPR models for predicting quinary compositions
that were trained on ternary samples have an initial MAE of less than 10%; the quinary
prediction models trained on quarternary only or on both sub-systems showed an initial
MAE less than 5% and quickly approached an MAE of less than 2%. The advantage of
pre-taining, perhaps not surprisingly, is greatest at earlier stages (and sparser-data training
stage) of learning. Pre-training on the lower dimensional spaces reduces the training time
by nearly a factor of two for both quarternary and quinary composition spaces. As synthesis
of training/trial samples is slow and expensive, this is a significant savings, even though
un-pre-trained models eventually achieve comparable accuracy. The difference between
the quinary models pre-trained on only quarternary and ternary+quarternary is marginal,
suggesting that the quarternary model captures all of the significant relationships learned
by the ternary model.

The GPR models showed similar performance to the RF models. A complementary
plot to Figure 3 for GPR models is included in the Supplemental Information.

In both cases, the model performance indicates that training on lower-dimensional
samples is beneficial for predicting on high-dimensional systems. Synthesis laboratories
often have prior training data on lower dimensional systems already acquired. This prior
data can seed AL-based regression models. Furthermore, humans often work their way
up to complex sample synthesis. Instead of trying to synthesize a 5-element sample
immediately, researchers might first manufacture 3- and 4- element analogues. This allows
researchers to tune the composition by just a few elements simultaneously instead of trying
to tune five elements simultaneously. The active learning regression approach is compatible
with this type of human calibration; as the human makes successively more complex
samples, the regression model can be trained simultaneously. Once the human is prepared
to make the most complex samples, they can immediately rely on the model predictions.

3.2. Feature Importance and Interdependence

Going to higher composition spaces is significantly harder, not only because every
additional element brings in additional parameters, but these parameters are often strongly
coupled with the parameters from the lower dimensions. Adding a new element to the
composition spaces requires learning additional parameters and learning new interdepen-
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dencies between already trained lower dimensional parameters with the new parameters.
The interdependence of the synthesis parameters is best summarized in the mutual informa-
tion index shown in Figure 4. The mutual information index encodes how the knowledge
of one variable decreases uncertainty about another variable. Unlike other correlation
coefficients, it does not assume a linear relationship between the two variables.

Figure 4. Mutual information index for all input parameters and atomic percentages for all data.

The mutual information index (MI) for a 12-dimension target space (gun power and
gun angle for six elements) shows that eight of those dimensions are strongly correlated.
The sputtering power for the elements is strongly correlated and strongly affects the atomic
percentage of all the other elements. It is unsurprising that each element’s gun power has
the highest mutual information with its atomic percentage. Still, the MII with its atomic
percentage is not uniformly high for every element. For example, Sb gun power affects Ti
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atomic percentage as much as it does its own. However, the angles of the sputtering guns
relative to the substrate play a negligible role for almost all elements. Only the angle of the
Ta and Sb guns impacted the atomic percentage of other elements. This is likely due to the
high Sb and Ta sputtering rate relative to all the other elements. The high sputtering rate of
Sb and Ta means they can easily dominate the sample composition if they are both pointed
directly at the substrate. Moving the angle of the gun away from the target is an effective
way to modulate these high sputtering rates. For the other elements, whose sputtering
rates are significantly lower than Sb or Ta, if they are pointed away from the substrate, their
sputtering rate (and thus atomic percentage) quickly approaches zero. The MII for these
values is shown below the black bar in Figure 4. Their angle must be set so they are always
pointed directly at the substrate. Regarding mutual information, this means the angle of Ta
and Sb has a high MII with the final composition and all other elements have a low MII.

The AL models most often suggested the same sputtering angle for the slowly sputter-
ing V, Fe, Ti, and Nb (i.e., pointed directly at the substrate) even though there were training
samples with other angles in the datasets. The model finds effective means of lowering
the complexity of the target space without expert insight. It finds that when sputtering
elements that have very different sputtering rates, it is often better to point the angle of
slowly sputtering elements directly towards the substrate during a synthesis study and only
adjust the angle of the high sputtering rate elements. The AL model, in effect, ‘discovers’ a
good rule-of-thumb for human operators to follow when navigating a multi-element target
space requiring very different sputtering rates.

The source of coupling between synthesis parameters in physical vapor deposition is
somewhat elusive and has been the source of research before, albeit literature on many-
element sputtering is limited. Elastic scattering of different elements while in transit to the
substrate has been observed and postulated as a reason for changes in thin-film composition
under certain sputtering conditions [15,41]. Anecdotally, in this study, interactions between
the magnetic fields of neighboring guns were sometimes observed through visible changes
to the halo of argon surrounding each sputtering gun. When the power of one gun was
turned up high, the magnetic field of neighboring guns seemed to be altered. The degree of
coupling between neighboring magnetic fields was not quantified in this study. The study
herein was concerned more with a practical approach to dealing with complex coupling in
the sputtering process, as opposed to a physics-based explanation.

3.3. Comparison to Other Active Learning Optimization Approaches

The method presented herein shows high interpretability, high prediction accuracy,
and a very low barrier to entry. The entire model can be executed in under 50 lines of code.
The methods and classes used are well-documented online, with plenty of supporting
tutorials. An example notebook and the full dataset are also included in this publication’s
Supplemental Material. There are also numerous open-source libraries and resources for
performing the same process optimization outside of the ones used in this article.

The ability to perform transfer learning enables researchers to pre-train AL regression
models even with data not directly relevant to the composition of interest. Exhaustive
calibration studies, or QCM-guided calibration studies, can only make predictions within
the target system being calibrated. The AL regression approach succeeds even when trained
with samples from other compositional systems. For example, a sample with a TaNbFeSb
composition can be used as a training data point for a VNbFeSb; this is the case in Figure 3.
The AL regression method can determine interactions between Nb, Fe, and Sb from the
TaNbFeSb and apply it to the VNbFeSb sample.

Active learning methods have been previously applied to predict single scalar outputs
from multivariate inputs [42,43]. Many materials engineering problems require simul-
taneous optimization of multiple parameters, whether it is a multinary composition or
competing material properties like hardness and strength. Furthermore, many active
learning studies have focused on synthesis methods that can be automated or performed
in a high-throughput manner [44]. The intersections of active learning, high throughput
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experimentation, and automation are currently being pursued by many self-driving lab-
oratories around the world. The Ada laboratory at the University of British Columbia
has demonstrated several successes in machine learning-driven material synthesis [45].
Notably, the system found a global maxima of hole mobility in 35 sample runs. In another
publication, authors demonstrated Ada for performing multi-objective optimization of thin
films with competing objectives [46].

Yet, there still exist a multitude of material synthesis methods that are not yet auto-
mated or not easily converted into a high-throughput method. In these cases, researchers
are attempting to optimize multivariate objectives from sparse data. Active learning can
potentially benefit these labor-intensive processes all the same. Human operators, acting
alongside active learning algorithms, can reach optimized synthesis parameters much faster
than a human operator alone. The high predictive performance of these models on sparse
datasets enables researchers to use active learning with only a single sample needed.

This study builds upon these previous investigations but demonstrates active learning-
based multi-output recommendations for targeted synthesis on a system that is not high
throughput or robotically controlled but, instead, labor intensive and thus built on sparse
and expensive measurements. The goal of this effort is not to replace a human operator with
a robot but to augment human performance by quantifying the structure of the target space
and identifying trends and insights that could be converted into rule-of-thumb to guide
optimization when the empirical dataset is even sparser at the beginning of a synthesis
campaign in a compositional space.

4. Conclusions

Materials science is increasingly moving in the direction of large datasets, whether com-
putationally generated or experimentally generated. These large datasets are well-equipped
for deep learning algorithms such as Google’s GNoME platform [47]. Concurrently, ad-
vances in robotic systems are pushing materials science towards automated synthesis and
experimental discovery through self-driving laboratories.

Yet, still, the vast majority of materials science research is not yet compatible with
deep learning methods due to data sparsity, and most laboratories do not have access to
high throughput robotic systems. Active learning, together with transfer learning stand to
fill this gap and enable higher productivity for these traditional laboratories.

Although the AL approach was demonstrated for magnetron sputtering, it is extensi-
ble to other thin-film physical vapor deposition techniques, such as other physical vapor
deposition systems [11,48–50], chemical vapor deposition [3,4], and plasma laser deposi-
tion [51,52]. It may also be extensible to other synthesis techniques that are high-throughput
compatible, such as additive manufacturing or continuous flow synthesis [53]. This active
learning workflow applies as long as the system has a finite number of tunable parameters,
and those tunable parameters are strong predictors of sample composition.

This method also has the potential to be incorporated as a ‘cold start’ for other active
learning workflows, such as those used in self-driving laboratories. The operation of
autonomous workflows still requires an initial point of entry. Where to start regarding
instrument process calibration is not always clear before autonomous synthesis. The method
detailed herein can be used to initialize synthesis workflows to achieve a targeted composi-
tion, or to efficiently explore compositional systems, by seeding with previously collected
data even if the data are not completely in the target space or are in a lower-dimensional
target space.

We strongly encourage researchers who are working on labor-intensive synthesis
where datasets are too sparse for many machine learning approaches to adopt active- and
transfer-learning approaches in their day-to-day laboratory operations. Having humans
work alongside active learning models can vastly improve synthesis efficiency, productivity,
and throughput.
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